
Because "use urandom" isn’t everything: a deep dive into
CSPRNGs in Operating Systems & Programming Languages

Aaron Zauner
azet@azet.org

lambda.co.at:
Highly-Available, Scalable & Secure Distributed Systems

hack.lu 2017 - 18/10/2017





Why do we need Random Numbers?

I randomize stuff in your operating system / language
I man rand
I Python: os.urandom
I TLS session cookies
I Key generation (e.g. RSA / Diffie-Hellman)
I TCP SYN cookies
I Bash: ${RANDOM} :)

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 1/1



CSPRNG i

I “Cryptographically Secure Pseudo Random Number Generator”
I aka “RNG”, “Random number generator”..
I Crypto nerds tend to call them “CSPRNGs” you may call them RNG or whatever, I don’t

care that much as long as it’s secure!

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 2/1



CSPRNG ii
I Widely implemented in OS kernels

I Linux: /dev/urandom
1. manpage man random has been wrong for years
2. many myths about kernel entropy

I FreeBSD: /dev/*random
1.
2. Replace the RC4 algorithm for generating in-kernel secure random numbers with Chacha20. Keep

the API, though, as that is what the other *BSD’s have done. Use the boot-time entropy stash (if
present) to bootstrap the in-kernel entropy source.
(https://svnweb.freebsd.org/base?view=revision&revision=317015 - Sun Apr 16 09:11:02 2017 UTC)

I Windows: RtlGenRandom()
I ..and in programming languages

I (i.e. Python os.urandom, PHP rand(),..)
I some had really bad bugs for a long time (i.e. debian predictable SSH keys: CVE-2008-0166)
I many use the kernel provided CSPRNG, others use OpenSSL or custom RNGs - which is BAD!
I OpenSSL provides a user-space RNG many link to or make use of (don’t!)
I Whoops: CVE-2017-11671: GCC generates incorrect code for RDRAND/RDSEED

intrinsics (recent)hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 3/1



Some History

I the /dev/random and /dev/urandom devices used to be really old code (mid-90ties)
originated from Ted Tso and a few others

I the manpage for them was wrong until fixed in late last december!
I you don’t have to worry about kernel entropy - this is a myth!
I HAVEGE won’t save you! it can make things worse (See:

https://blog.cr.yp.to/20140205-entropy.html)

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 4/1



Old Linux Kernel implementation 0.x>4.x

I mixing different pools of interrupts
I quite complicated to understand even for well versed C programmers
I it worked without larger incidents - probably pure luck and researchers unable to read

char device code
I old design described well here:

I Blog Post: https://pthree.org/2014/07/21/the-linux-random-number-generator/
I Academic: https://eprint.iacr.org/2012/251.pdf

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 5/1



Current implementation i

I after long discussions and advice by crytographers the old design in random.c was
changed in 4.2

I based on the old pools, AES-NI (if available - modern Intel/AMD CPUs have those),
ChaCha20 XOR RdSEED (via Google’s BoringSSL / Adam Langley -
https://marc.info/?l=linux-crypto-vger&m=146584488030185&w=2)

I neat design, backtracking resistant, pretty fast, too:
azet@nd01 ~ % dd if=/dev/urandom of=/dev/null bs=1M count=1024
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 11.8289 s, 90.8 MB/s

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 6/1



Current implementation ii

I major work overhauling crypto-code in the kernel started with Linux 4.2
I Backtracking protection

(https://marc.info/?l=linux-crypto-vger&m=146583297126471&w=2)
I Ted Tso (Jun 13, 2016): With /dev/urandom we were always emitting more bytes

than we had entropy available, because not blocking was considered more
important. Previously we were relying on the security of SHA-1. With
AES CTR-DRBG, you rely on the security with AES.
(https://marc.info/?l=linux-crypto-vger&m=146584488030185&w=2)

I Doesn’t track entropy anymore because the “CRNG” (terminology,..) is faster
(https://marc.info/?l=linux-crypto-vger&m=146458684806389&w=2)

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 7/1



Current implementation iii

I random: replace urandom pool with a CRNG
(https://marc.info/?l=linux-crypto-vger&m=146217043829396&w=2)

I Nikos Mavrogiannopoulos
(https://marc.info/?l=linux-crypto-vger&m=146229250001030&w=2):

I know, and I share this opinion. To their defense they will have to
provide a call which doesn‚t make applications fail in the following
scenario:
1. crypto/ssl libraries are compiled to use getrandom() because it is
available in libc and and in kernel
2. everything works fine
3. the administrator downgrades the kernel to a version without
getrandom() because his network card works better with that version
4. Mayhem as applications fail

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 8/1



Current implementation iv

I random: make /dev/urandom scalable for silly userspace programs
(https://marc.info/?l=linux-crypto-vger&m=146583311726544&w=2):

On a system with a 4 socket (NUMA) system where a large number of
application threads were all trying to read from /dev/urandom, this
can result in the system spending 80% of its time contending on the
global urandom spinlock. The application should have used its own
PRNG, but let‚s try to help it from running, lemming-like, straight
over the locking cliff.

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 9/1



Current implementation v

I Myths and lies in man 4 random finally corrected:
https://bugzilla.kernel.org/show_bug.cgi?id=71211&utm_content=buffer1d02b

I this took years of convincing the original upstream authors etc.
I had a huge impact on use of RNGs in programming languages etc.

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 10/1



Language issues: Ruby

I using OpenSSL RNG designed for fast TLS use, not general purpose
I multiple security engineers and cryptographers tried to convince them to switch to

/dev/urandom
I took more than a year but finally they implemented a similar design to libsodium (I’ve

made a T-Shirt!)
I SecureRandom without OpenSSL (or compatible alternatives) is nonsense.
I Please don't rude.
I Legendary bug: https://bugs.ruby-lang.org/issues/9569
I Tony Arcieri (@bascule) wrote a wrapper for the time being:

https://github.com/cryptosphere/sysrandom

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 11/1



Language issues: Node.js

I similar story to Ruby
I lots of input from normal users (useless)
I https://github.com/nodejs/node/issues/5798 (endless thread)
I Latest comment: ‘Note that OpenSSL has just landed a commit to use DRGB with

AES-CTR of NIST SP 800-90A as openssl/openssl@75e2c87. We can use it with the
os-specific seeding source (e.g. /dev/urandom) by a default define flag of
OPENSSL_RAND_SEED_OS. I think it is best for us to wait for the next release of
OpenSSL-1.1.1.“

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 12/1



Language issues: Erlang

I same as Ruby and Node.js
I https://github.com/erlang/otp/blob/maint/lib/crypto/c_src/crypto.c

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 13/1



Python imrprovement

I warns if there’re insecure values: https://bugs.python.org/issue27292

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 14/1



OpenSSL

I Not thread safe - userspace - prone to bugs
I https://github.com/openssl/openssl/issues/898
I https://wiki.openssl.org/index.php/Random_Numbers
I Not even recommended by OpenSSL to use it as non-TLS CSPRNG

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 15/1



HAVEGE

I dangerous to use!
I not maintained in more than 10yrs
I no current contacts / security audits except by the original authors
I doesn’t improve security!

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 16/1



THANKS FOR YOUR PATIENCE. ARE THERE ANY QUESTIONS?

Twitter:
@a_z_e_t

E-Mail:
azet@azet.org

XMPP:
azet@jabber.ccc.de

GitHub:
https://github.com/azet

GPG Fingerprint:
7CB6 197E 385A 02DC 15D8 E223 E4DB 6492 FDB9 B5D5

hack.lu 2017 - 18/10/2017 Because "use urandom" isn’t everything: a deep dive into CSPRNGs in Operating Systems & Programming Languages
Aaron Zauner 17/1


