
>>> Bootstrapping an architectural research platform
>>> From 0 to hero in 60 min

Name: Jacob Torrey†

Assured Information Security, Inc.
Date: October 18, 2016

†torreyj@ainfosec.com (@JacobTorrey)

[~]$ _ [1/40]



>>> TL;DR

Raison d'être
The intricacies of low-level architectural analysis have
yielded significant findings vis-à-vis security in recent
years. As this area of research expands, so too does the
duplication of effort to implement "boiler-plate" software
needed to gain access or introspective ability required for
the end research goal(s).

This talk aims to provide a road-map to accelerate
researchers performing their research by reducing duplication
of effort and provide a reference to the existing project
landscape1.

1This is a different format from usual talks; feedback welcomed!

[1. Front matter]$ _ [2/40]



>>> Caveat

Disclaimer
This talk does not describe new research I've performed; a
survey of tools available to help you jump-start your
research in this area stemming from the consistent emails I
get asking for help. Slides are verbose to serve as a
reference.2

2Also, that tweet is fake.[1. Front matter]$ _ [3/40]



>>> Who am I?

* Advising research engineer
@ Assured Information
Security in Denver, CO
(words are my own)

* Leads low-level Computer
Architectures research
group

* Plays in Intel privilege
rings ≤ 0

[1. Front matter]$ _ [4/40]



>>> Outline

1. Front matter

2. High-level x86
Boot Process

3. Kernel-viewable events

4. VMM-viewable events

5. SMM

6. Case study: TLB-splitting with MoRE

7. Tools
VMM
OS
UEFI
Other

8. Back matter

[1. Front matter]$ _ [5/40]



>>> Privilege rings in x86

* Intel 386 added kernel
protection and separation
of processes; officially
rings 0-3, unofficially
-1, -2, & -3 (higher is
less-privileged)

* Need to access to proper
ring depending on what
architectural features you
require

* Once you know what level
of access is needed,
easier to pair with
tool(s) to boot-strap
research

* Typically, the higher the
ring, the easier
development is (e.g., much
simpler to develop in
user-space than SMM)

[2. High-level x86]$ _ [6/40]



>>> Paging

* One of the most powerful features implemented in the 386
is paging and the concept of virtual memory

* Allows more privileged code to isolate and manage less
privileged processes (e.g., OS multi-plexing applications
or VMM managing OSes)

[2. High-level x86]$ _ [7/40]



>>> Cache

* Memory access is slow, processors aim to cache as much as
possible to minimize latency hits

* CPU defaults to accessing cache, if a miss occurs,
caching hierarchy will fill the correct line; CPUs have
multiple levels L1, L2 & L3

* L3 is a shared resource, providing side-channel
opportunities3

* Caching type is determined by a combination of control
register bits as well as bits in the paging structures
and the MTRRs4

3Newer CPUs have cache allocation technology which purports to assign L3
regions to core or VM

4Invisible Things Labs showed SMM attack where the MCH determined if
SMRAM was accessible, but if there was not a cache miss, CPU fetch would
not reach MCH; fixed now by BIOS locking MTRRs for certain regions of
memory

[2. High-level x86]$ _ [8/40]



>>> TLB

* Even memory accesses to look up virtual-to-physical
translations are cached in the translation lookaside
buffer (TLB)

* In silicon, there are 2-3, I-TLB, D-TLB and on newer
systems, S-TLB

[2. High-level x86]$ _ [9/40]



>>> IVT/IDT

* Main mechanism for the SW to respond to hardware events
is through the interrupt handling process

* Interrupt Descriptor Table in protected mode, Interrupt
Vector Table in real mode

* OS fills a table in memory and a register pointer (IDTR)
with functions to handle different types of events

* In protected mode can also provide mechanism to change
privilege rings (CPL)

[2. High-level x86]$ _ [10/40]



>>> Virtualization

* "Ring -1"
* Provides many of the same features available to OS to
multiplex/isolate applications for a virtual machine
manager (VMM) to manage OSes

* Originally done in a "hack-y" way through software or
modified guest OS, now can boot unmodified OS with VT-x,
which extends the architecture to support
hardware-assisted virtualization

[2. High-level x86]$ _ [11/40]



>>> Boot process

* Insight into how the system is loaded helps research if
you want to preempt certain processes

* System begins in 16-bit real mode to support backwards
compatibility for legacy OSes such as DOS

* Legacy BIOS (or UEFI compatibility mode) continues in
real mode

* Modern UEFI systems quickly transition to protected mode
for performance reasons and additional features

[2. High-level x86]$ _ [12/40]



>>> BIOS

* Boot ROM is loaded into segmented 16-bit mode memory and
executed

* Loads BIOS from SPI flash (usually) and initializes
system hardware (POST) as well as IVT

* Configures system management mode and (hopefully) locks
it with write-once lock bits

* Executes PCI option ROMs to configure hardware devices
(which may hook IVT entries)

* Executes OS boot-loader which calls BIOS services through
IVT calls (some IVT entries are designed to be hooked by
OS for periodic alerting)

[2. High-level x86]$ _ [13/40]



>>> UEFI

* Boot ROM is loaded into segmented 16-bit mode memory and
executed

* Loads UEFI from SPI flash (usually) and initializes
system hardware (POST) then transitions to protected mode
and configures identity-mapped page tables as well as IDT

* Configures system management mode (called UEFI Runtime
Services) and (hopefully) locks it with write-once lock
bits

* Executes PCI option ROMs to configure hardware devices in
DXE: Driver Execution Environment

* Executes UEFI application(s) (PE-format) to load OS or
boot-loader, passing system table structure of function
pointers for OS/boot-loader to call

[2. High-level x86]$ _ [14/40]



>>> Hooking Boot Process

* Starting with simple boot-loader skeleton, easy to hook
boot process and gain insight into OS boot-process

* For legacy BIOS, a simple IVT hook will allow you to be
alerted and optionally alter BIOS calls (real mode memory
segmentation takes a bit to wrap your head around)

* For UEFI, develop application and use the UEFI
LoadImage()/StartImage() boot services to start OS
boot-loader, hooking system table structure as desired

[3. Kernel-viewable events]$ _ [15/40]



>>> Interrupt hooking

* Much harder with Patch Guard, using Windows XP or 7
preferable

* Need to make sure compiler doesn't destroy register state
based on incorrect calling conventions

* VMM can also configure to trap on kernel-level
interrupts, may be easier to implement in thin-VMM over
patching kernel

* Following slides have a couple examples of what can be
done with this type of event hooking

[3. Kernel-viewable events]$ _ [16/40]



>>> Page faults (#PF)

* Triggered whenever a mapping from virtual-physical memory
is marked as non-present

* If mapping is cached in TLB, may not trigger #PF, must
use INVLPG instruction to flush TLB

* Example usage: Shadow-Walker memory-hiding root-kit
hooked the #PF-handler to overload a single virtual
address to point to different physical addresses
depending on type of access (code vs. data)

[3. Kernel-viewable events]$ _ [17/40]



>>> General Protection Faults

* Used by PAX/GRSecurity to emulate the NX-bit, GPFs occur
when the paging structure indicate the mapping is valid,
but permissions are wrong

* Set the User/Supervisor (U/S) bit on the page table entry
to prevent access:

* If the type of access was data access, set the bit to
allow, prime TLB and then reset the U/S bit without
INVLPG

* If the type of access was execution (instruction fetch),
alert or terminate (enforcing NX)

* Maintains a TLB-split to minimize performance impact

[3. Kernel-viewable events]$ _ [18/40]



>>> Performance Counters

* Designed for use to optimize performance-critical code,
now have been found to be useful for many other
interesting purposes

* Accessible from ring 0, many APIs to export them to
user-space (of varying quality)

* Provide access to information about CPU behavior, few
examples:

* LBR: Last Branch Record
* LLC_MISS: Cache miss counter5

* EPT: EPT directory look-ups
* D/ITLB_MISS: Number of misses in TLB6

5Used by Herath & Fogh to detect Rowhammer attack (BH'15)
6Could probably be used to detect Shadow Walker-type

root-kit (if any of you are looking for a research topic)

[3. Kernel-viewable events]$ _ [19/40]



>>> Branch Tracing

* Originally, the last-branch-record MSR would records a
few previous branches (low overhead, low power)

* Brace Trace Store (BTS) provided a much higher amount of
granularity and more details traces of control-flow (high
overhead, high power)

* Newer CPUs will support Intel Processor Tracing7 that can
log control-flow information via a ring-buffer (low
overhead, high power)

7https://github.com/01org/processor-trace

[3. Kernel-viewable events]$ _ [20/40]



>>> VM Exits

* Analogous to interrupts, but allow the VMM to be notified
when certain architectural events occur

* Some events are mandatory to trigger VM Exit, many are
configurable

* Without VPID, TLBs may be flushed
* A few interesting events that can be triggered on:

* RDRAND instruction
* MOV to control registers
* Reading/writing to MSRs
* Reading CPUID
* I/O to CPU ports and hardware devices
* Reading time-stamp counter
* Trap-flag for single-stepping
* ...

[4. VMM-viewable events]$ _ [21/40]



>>> EPT faults

* Analogous to interrupts for paging violations, allows VMM
to manage guest OS's view of memory

* Hardware-assisted to minimize performance impact

* VMM is notified when there is any form of violation

* Can also trap on the OS #PF interrupt and chose to inject
to guest or silently squash to manage memory preemptively

[4. VMM-viewable events]$ _ [22/40]



>>> SMM overview

* "Ring -2"

* Vestigial mode of CPU operation designed for chip-set
manufacturers to run privileged code transparently to OS

* Lots of research in this area, from 2006-now is protected

* Modern-day systems use this mode of execution to provide
the UEFI Runtime Services for UEFI management after
system boot

* Highest-privilege on the system, has full access to
system memory and other than through side-channels, very
hard to detect its execution

[5. SMM]$ _ [23/40]



>>> Protections in place

* Before 2006, the region of memory dedicated for SMM
(SMRAM) was unprotected

* Modifications to the MCH block access to SMRAM unless
executing in SMM

* Invisible Things Labs showed caching attack against SMM
by changing the MTRRs caching region and executing code
directly from cache while in SMM

* Modern BIOSes use lockable registers to prevent changing
the caching behavior of the SMRAM region

[5. SMM]$ _ [24/40]



>>> SMI/STM

* SMM is entered through a SMM interrupt (SMI)

* The SMM handler will handle the interrupt and return to
normal execution with the RSM instruction

* SMM can support the execution of a second hypervisor to
contain SMM handler and work in concert with normal
executive mode: SMM Transfer Monitor (STM)

* Intel released open-source reference implementation of
STM8, though deployment is rare

8https://firmware.intel.com/content/smi-transfer-monitor-stm

[5. SMM]$ _ [25/40]



>>> Case study

* Problem

* Needs

* How it was solved9

* How to solve it today (reducing duplication of work)

9http://github.com/ainfosec/MoRE

[6. Case study: TLB-splitting with MoRE]$ _ [26/40]



>>> TLB-Splitting with S-TLB

* Challenge: Simulate the TLB-splitting performed by Shadow
Walker and PAX/GRsecurity on modern CPUs (Core-i series)
with S-TLB

[6. Case study: TLB-splitting with MoRE]$ _ [27/40]



>>> Architectural needs

1. Ability to trap on memory accesses and differentiate
between code and data fetch

2. Ability to manage memory without OS interference

3. Minimize performance impact

4. No application source code knowledge or access

[6. Case study: TLB-splitting with MoRE]$ _ [28/40]



>>> VMM design

* Thin VMM that supports modern OS

* Support VPID to prevent TLB flushing during VM Exit

* Ability to use the EPT structures' more granular
execute-only permissions

Critical Need
Small code-base to understand within limited time-frame, Xen,
KVM, etc. too much time to spend learning code rather than
testing hypothesis

[6. Case study: TLB-splitting with MoRE]$ _ [29/40]



>>> Tools I used

* Began with a skeleton kernel driver for Windows 7 32-bit
no PAE

* Ran into STLB issues and Windows 7 would BSOD when paging
structures updated by third-party

* Switched to using cleaned-up PoC VMX root-kit as template
minimal VMM

* Had to add and debug support for EPT and VPID
* Added kernel callbacks for new process creation
* Added ad hoc hyper-call API (read insecure)
* Limited to 32-bit no PAE older OS due to hard-coded
elements of the base root-kit that I didn't have time to
rewrite

[6. Case study: TLB-splitting with MoRE]$ _ [30/40]



>>> Tools I'd use if I were doing it again

Bareflank
"The Bareflank Hypervisor is an open source, lightweight
hypervisor... that provides the scaffolding needed to rapidly
prototype new hypervisors... Existing open source hypervisors
that are written in C are difficult to modify, and spend a
considerable amount of time re-writing similar functionality
instead of focusing on what matters most: hypervisor
technologies. Furthermore, users can leverage inheritance to
extend every part of the hypervisor to provide additional
functionality above and beyond what is already provided."

[6. Case study: TLB-splitting with MoRE]$ _ [31/40]



>>> Bareflank I

Bareflank
"The Bareflank Hypervisor is an open source, lightweight
hypervisor... that provides the scaffolding needed to rapidly
prototype new hypervisors... "

* Open-source: https://github.com/Bareflank/hypervisor
* Lightweight: 10k SLOC (majority if which is testing code
to maintain 100% test coverage

* Scaffolding: If you are not researching how VT-x works,
use a tool to rapidly focus on your research hypothesis

* Support: Linux, Windows and OS X (expected by year end)

[7. Tools]$ _ [32/40]

https://github.com/Bareflank/hypervisor


>>> Bareflank II

Bareflank
"...users can leverage inheritance to extend every part of
the hypervisor to provide additional functionality above and
beyond what is already provided."

* Adding VPID support:
https://github.com/Bareflank/hypervisor_example_vpid

* < 10 SLOC for a basic case

* Adding selective MSR trapping: https:
//github.com/Bareflank/hypervisor_example_msr_bitmap

* < 25 SLOC for a basic case

[7. Tools]$ _ [33/40]

https://github.com/Bareflank/hypervisor_example_vpid
https://github.com/Bareflank/hypervisor_example_msr_bitmap
https://github.com/Bareflank/hypervisor_example_msr_bitmap


>>> LibVMI

* Abstraction layer for performing virtual-machine
introspection, if your goal is to monitor a process or
OS, use LibVMI10

* Provides simple user-space API to trace/modify/trap on
execution of software from another guest

* Supports multiple VMMs, OSes and architectures
* Example use-cases from training at TROOPERS11 provide
good jumping-off point

10http://libvmi.com/
11https://github.com/tklengyel/troopers-training

[7. Tools]$ _ [34/40]



>>> SimpleVisor

* SimpleVisor12 provides a very stripped-down VMM that can
support Windows 64-bit

* 10 SLOC in assembly, 500 SLOC in C
* If you are engaging in a VT-x specific research effort
and want ground-truth for how things actually work
instead of reading the Intel manuals (though you should
have read them already), use this as a self-documenting
manual

* Can load/unload while Windows is executing, providing
ability to introspect on the host OS without more complex
VMM configuration

* HyperPlatform13 is similar to SimpleVisor, but more
robust and extensible for Windows virtualization

12https://github.com/ionescu007/SimpleVisor
13https://github.com/tandasat/HyperPlatform

[7. Tools]$ _ [35/40]



>>> Skeleton kernel driver

* Many features are available in ring-0, need access to
make use of

* A skeleton kernel module14 can help serve as boiler-plate
* Linux is easier due to the driver signing hurdles for
Windows

* Windows drivers must be signed by a trusted certificate
or signature verification disabled15 in order to easily
execute

14http://courses.linuxchix.org/kernel-hacking-2002/10-your-first-kernel-
module.html

15https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/test-
signing

[7. Tools]$ _ [36/40]



>>> UEFI Tools

* GNU-EFI provides library for doing EFI application
development16

* The open-source UEFI reference implementation17 is also
available for use, though more difficult to use initially

* The shim18 Linux loader is a great place to start to see
how to inject code into the boot process and load another
image with modified Boot Services table

16https://github.com/vathpela/gnu-efi/
17http://www.tianocore.org/edk2/
18https://github.com/rhinstaller/shim

[7. Tools]$ _ [37/40]



>>> PUFlib

* Physically Uncloneable Functions expose manufacturing
variance to software for device-specific responses

* Very hardware specific, vary with temperature and
hardware age

* Mostly academic research field thus far; PUFLib19 will
provide abstraction layer and error-correction

* Hopefully releasing early November with first ubiquitous
source of PUFs found in almost all systems

* Provides simple seal()/unseal() API to lock data to a
specific hardware device

19https://github.com/ainfosec/puflib

[7. Tools]$ _ [38/40]



>>> Conclusions and where to go for help

* Once a research question is posed, rapid determination of
what introspective features are needed, what privilege
level needed and what tools are available to assist

* There is a wealth of interesting research projects in
this low-level space; increasing number of tools to
assist with research

* IRC20 and Twitter21 a good resource for getting another
perspective

* I hope this helped to share my experiences as I did
things the not-so-great way to aid you in doing things
the way I wish I had/could

20#osdev and #bareflank on Freenode
21https://twitter.com/JacobTorrey/lists/firmware-security

[8. Back matter]$ _ [39/40]



>>> Questions?

* Thank you for listening!

* Please don't hesitate to reach out with questions and/or
comments!22

22Another fake tweet

[8. Back matter]$ _ [40/40]


	Front matter
	High-level x86
	Boot Process

	Kernel-viewable events
	VMM-viewable events
	SMM
	Case study: TLB-splitting with MoRE
	Tools
	VMM
	OS
	UEFI
	Other

	Back matter

