
SinFP3
More Than a Complete Framework for Operating System Fingerprinting – v1.0

Patrice <GomoR> Auffret

@PatriceAuffret

@networecon

 Patrice <GomoR> Auffret

 10+ years of InfoSec experience

 www.gomor.org

 www.protocol-hacking.org (french only)

 www.secure-side.com (FreeBSD Web hosting company)

 www.networecon.com (where the tool will be released)

 Currently working for technicolor (security assessments coordinator)

 Network protocol « Hacker »

 Net::Frame Perl modules

 8021.Q, LLTD, OSPF, IPv4/6, ICMPv4/6, TCP/UDP, STP, …

 Net::SinFP & Net::SinFP3 Perl modules

 That is the subject of today

 FreeBSD addict & Perl developer (http://search.cpan.org/~gomor/)

2

`whoami`

10/22/2012

http://www.gomor.org/
http://www.protocol-hacking.org/
http://www.protocol-hacking.org/
http://www.protocol-hacking.org/
http://www.secure-side.com/
http://www.secure-side.com/
http://www.secure-side.com/
http://www.networecon.com/
http://search.cpan.org/~gomor/

 Operating system fingerprinting
 What is it? (quickly)
 What is SinFP?

 Limitations of Nmap OS fingerprinting

 SinFP approach to active fingerprinting

 SinFP3 matching algorithm and database

 Demo

 SinFP3 architecture and advances
 Comparison with previous versions of SinFP
 Zoom on Input::SynScan, Input::Connect, Input::ArpDiscovery

 SinFP3 passive fingerprinting (if time permits)

 Conclusion

3

Agenda

10/22/2012

 Yes, what’s that stuff? (pretty sure everyone knows already)

 The art or remotely identifying the nature of an Operating System by
analyzing how its TCP/IP stack is crafting network packets

 Two approaches
 Active mode

 Sends probes to elicit responses

 Analyst decides on the format of requests (very important)

 Passive mode
 Listen to the network

 Analyst does not decide on the format of requests (also very important)

 These two approaches give a different signature (or fingerprint)
 More on that later (if time permits) …

 Why not simply using application-level « banners »?
 If you have the choice, use this option

 Or correlate with OSFP to have a better identification

4

What is operating system fingerprinting (one slide)

10/22/2012

 An Operating System FingerPrinting tool (OSFP)

 Written in Perl (the best language, /troll)

 Module based, for easy integration in other (Perl?) projects

 Based on the Net::Frame Perl modules (since SinFP3)

 1st tool to implement IPv6 fingerprinting (active and passive) \o/

 History

 V0.92: June 2005

 V1.00: March 2006

 V2.02: September 2006 (complete rewrite)

 V2.09: March 2011

 SinFP3 v1.00: now

 Was integrated in BackTrack, but no more in latest versions

 Who knows why?

5

What is SinFP?

10/22/2012

 Nmap philosophy: one target IP has only one operating system

 Nmap probes

 6 TCP SYN (open port)

 1 ICMP echo

 1 TCP ECN (open port)

 1 TCP null (open port)

 1 TCP SYN|FIN|URG|PSH (open port)

 1 TCP ACK (open port)

 1 TCP SYN (closed port)

 1 TCP ACK (closed port)

 1 TCP FIN|PSH|URG (closed port)

 1 UDP (closed port)

 For a complete fingerprint, target MUST:

 Have one open TCP port

 Have one closed TCP port

 Allow ICMP echo requests

 Have one closed UDP port (those who answer ICMP port unreachable)

6

Limitations of Nmap OSFP (Nmap 1/2)

10/22/2012

 Problem 1: what if some of target’s answers are spoofed?

 A fitering device in-between answers to:

 UDP requests

 Out-of-state probes

 You have a fingerprint composed of different TCP/IP stacks

 TurtleOS, anyone?

 Problem 2: filtering, packet normalization and stateful inspection

 Nmap tests remaining:

 6 TCP SYN (open port)

 1 TCP ECN (open port) (not sure this one will resist packet normalization)

 Problem 3: easily detected by IDSs/IPSs

 Too noisy and packet format too easy to classify as Nmap fingerprinting

 Conclusion

 Nmap is only ok for LAN-side OS fingerprinting in today’s Internet conditions

7

Limitations of Nmap OSFP (Nmap 2/2)

10/22/2012

 Philisophy: one target IP/port has only one operating system

 Every probes MUST generate an answer from the true target

 Every probes MUST reach the true target (filtering evasion)

 We come with 3 TCP packets all targeted at one open TCP port

 One TCP SYN with just MSS TCP option

 SinFP2 hadn’t options at all, and some TCP/IP stacks don’t answer if no option

 One TCP SYN with many valid TCP options

 One TCP SYN|ACK (used for LAN-side fingerprinting)

 One operating system has only one signature in the database

 Matching algorithm takes care of modified fingerprints due to

 Filtering device in-between (MTU change, for instance)

 Customization of TCP/IP stack on the system

 During our tests, usually only one TCP SYN is enough to fingerprint reliably a
target

8

SinFP approach, active mode

10/22/2012

nmap -P0 -p 80 -O ovh1.secure-side.com

Running (JUST GUESSING): FreeBSD 7.X|6.X|8.X (98%)

Aggressive OS guesses: FreeBSD 7.0-RELEASE (98%), FreeBSD 6.3-RELEASE (98%),

FreeBSD 7.1-PRERELEASE 7.2-STABLE (98%), FreeBSD 7.2-RELEASE - 8.0-RELEASE

(94%), FreeBSD 8.1-RELEASE (94%), FreeBSD 7.1-PRERELEASE - 7.3-RELEASE (93%),

FreeBSD 7.1-RELEASE - 9.0-CURRENT (93%), FreeBSD 8.0-STABLE (93%), FreeBSD

7.0-STABLE (93%), FreeBSD 7.0-RELEASE - 8.0-STABLE (92%)

9

A fingerprinting example: Nmap

10/22/2012

sinfp3.pl -input-ipport -target ovh1.secure-side.com -port 80 -threshold 70 –active-2

Result for target [213.251.166.100]:80:

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144 M1460 S3 L20

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.4 (7.4-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.0 (7.0-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.3 (7.3-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.1 (8.1-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.0 (8.0-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.1 (7.1-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.2 (8.2-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.3 (8.3-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.2 (7.2-RELEASE)

IPv4: [score:94]: BH0FH0WH0OH0MH0SH1LH0/S1S2: BSD: OSS: FreeBSD: 9.0 (9.0-RELEASE)

10

A fingerprinting example: SinFP3

10/22/2012

 Binary flags, comparison between probe and response IP/TCP headers

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 Some comparison methods were taken from Nmap (O2)

 Comparison between TCP probes and replies on SEQ and ACK numbers

 Not anymore binary, but kept the name

11

SinFP3 matching algorithm (signatures 1/8)

10/22/2012

 TCP flags

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 Maybe a target will answer with more flags than SYN|ACK or RST?

 Never seen yet

12

SinFP3 matching algorithm (signatures 2/8)

10/22/2012

 TCP window size

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 One of the most important element

13

SinFP3 matching algorithm (signatures 3/8)

10/22/2012

 TCP options, values are extracted (like MSS, WScale)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 The most important element

 Number and order of TCP options is the best differientor between OSs

 Data may be returned from the target

 It is integrated into this element

 HP-UX loves to add « No TCP » data like this:

S3: B11120 F0x04 W0 O4e6f20544350 M0 S0 L6

14

SinFP3 matching algorithm (signatures 4/8)

10/22/2012

 Extracted MSS value

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 By extracting it, we make it easier to write our deformation masks

 Explanation will come

15

SinFP3 matching algorithm (signatures 5/8)

10/22/2012

 Extracted WScale value

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 Same here, easy to write deformation masks

16

SinFP3 matching algorithm (signatures 6/8)

10/22/2012

 Length of TCP options (in bytes)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

17

SinFP3 matching algorithm (signatures 7/8)

10/22/2012

 Complete IPv4 active signature (FreeBSD 8.3-RELEASE)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 Complete IPv6 active signature (FreeBSD 8.3-RELEASE)

S1: B11013 F0x12 W65535 O0204ffff M1440 S0 L4

S2: B11013 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1440 S3 L20

S3: B10020 F0x04 W0 O0 M0 S0 L0

 Complete IPv4 passive signature (Windows 7)

SP: F0x02 W8192 O0204ffff010303ff01010402 M1460 S8 L12

 Complete IPv6 passive signature (Windows 7)

SP: F0x02 W8192 O0204ffff010303ff01010402 M1420 S8 L12

18

SinFP3 matching algorithm (signatures 8/8)

10/22/2012

 3 level of deformation

 Heuristic0: no deformation

 Heuristic1: minor deformations

 Heuristic2: major deformations

 Deformation mask takes care of devices modifying packets

 No need to add many signatures for one same operating system

 So, number of signatures is far less than from Nmap’s database

 Example: all elements with heuristic1 deformation:

S1H1: B...13 F0x12 W6[45]... O0204ffff M1[34].. S. L4

S2H1: B...13 F0x12 W6[45]...
O0204ffff(?:01)?(?:0303ff)?(?:0402)?(?:080affffffff44454144)? M1[34].. S.
L(?:8|9|[12].)

S3H1: B...20 F0x04 W0 O0 M0 S. L0

19

SinFP3 matching algorithm (masks 1/4)

10/22/2012

 Non-deformed signature

 Match score: 100% (BH0FH0WH0OH0MH0SH0LH0)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 20

SinFP3 matching algorithm (masks 2/4)

10/22/2012

 Deformed signature because of reduced MTU (classic stuff)

 Match score: 98% (BH0FH0WH0OH0MH1SH0LH0)

S1: B11113 F0x12 W65535 O0204ffff M1452 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1452 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

21

SinFP3 matching algorithm (masks 3/4)

10/22/2012

 Deformed signature because of reduced MTU (classic stuff)

 Match score: 98% (BH0FH0WH0OH0MH1SH0LH0)

S1: B11113 F0x12 W65535 O0204ffff M1[34].. S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1[34].. S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 Each element (B, F, W, O, M, S, L) has a weight

 No deformation means higher weight (BH0, FH0, WH0, …)

 Most discriminent elements have higher weights (window size, options)

 Match score is calculated by additioning these match scores

22

SinFP3 matching algorithm (masks 4/4)

10/22/2012

 Every element has heurisitic0 (no deformation), heuristic1 and heuristic2
patterns in the database

 A match is found when:

 Intersection exists between S1, S2 and S3 signatures

 And by applying deformation masks when no match is found

 Highest score are kept as a matched fingerprint

 Then S1 intersection with S2, then only S2

 For IPv6:

 A matching signature is found: OK

 Nothing found, try searching against IPv4 signatures

 This works great, thanks to deformation masks

 For passive fingerprinting:

 Same algorithm, but against passive signatures

23

SinFP3 matching algorithm (intersection)

10/22/2012

 SQLite based

 Table Signature (active ones; 275 at this day)

 Table SignatureP (passive ones; 21 at this day)

 Not every signature is integrated

 Only taken from best conditions (usually target is installed on a VM)

 Only one signature per operating system version

 Trusted and untrusted signatures (flag in the database)

 All pcap traces are kept

 Ready for changes on analysis in the future

 A pretty good pcap database of operating systems

 Complete SinFP exchange for active mode, and SYN only for passive mode

 Need contributors for passive signature

 => sinfp[at]networecon.com

24

SinFP3 database

10/22/2012

 ARP discovery, IPv4 active fingerprinting

 For IPv6 mode, it is as easy as adding -6 option

 Default modules

 Input::SynScan (-input-synscan)

 DB::SinFP3 (-db-sinfp3)

 Mode::Active (-mode-active)

 Search::Active (-search-active)

 Output::Console (-output-console)

 Command lines

sinfp3.pl -input-arpdiscover -output-pcap

% sinfp3.pl -input-pcap -pcap-file '*.pcap' -output-csv –threshold 80

% sinfp3.pl -db-null -search-null -mode-null -input-null -output-ubigraph

25

Demo

10/22/2012

 Architecture and features

 Plugin-based

 Input, Mode, Search, DB, Output plugins

 Improvements on Active and Passive modes

 Matching algorithm

 Deformation masks were written manually

 No match score

 Probe requests

 Probe P1 has now a TCP MSS option

 Autonomous passive mode

 Passive signature database is no more correlated with active one

 And of course, the plugin-based architecture

 Allowing massive parallel scanning (for instance)

26

SinFP3 architecture and advances (1/2)

10/22/2012

27

SinFP3 architecture and advances (2/2)

10/22/2012

Input Next Mode DB Mode Search

Output

R

e

s

u

l

t

Lookup

 Input modules

 Input::Pcap, Input::IpPort, Input::SynScan, Input::ArpDiscover, Input::Sniff

 Input::Signature, Input::SignatureP, Input::Connect

 DB modules

 DB::SinFP3

 Mode modules

 Mode::Active, Mode::Passive

 Search modules

 Search::Active, Search::Passive

 Output modules

 Output::Console, Output::Pcap, Output::CSV, Output::OsOnly,
Output::OsVersionFamily, Output::Ubigraph

28

Currently implemented plugins

10/22/2012

 Written in Perl/XS/C

 IPv4 and IPv6 ready

 Efficient enough

 Deterministic

 20 minutes for TOP10 ports against a C-class

 Default: 200 packets per second, 3 tries (around 10 kB/s)

 KISS algorithm (do it yourself ;))

 Writes TCP packets directly at layer 4

 Don’t bother with computing checksums and other IP headers

 Works under GNU/Linux and BSD systems

 Uses SinFP3 magic SYN packet

 Scan once, replay fingerprinting

 Output::Pcap, then Input::Pcap

29

Zoom on Input::SynScan

10/22/2012

 Because SYN|ACK fingerprinting was a failure …

 Use TCP connect() and send a classic « GET / HTTP/1.0 »

 A listener is catching SYN probe and SYN|ACK reply

 Mode::Active generates the fingerprint

 Search::Active searches a matching signatures

 Works great from Linux (only?)

 Cause the SYN probe is the same used in SinFP active mode

 Same window size and TCP options

 Nearly stealthiest option for fingerprinting

 Not seen as active fingerprinting by a potential target IDS/IPS

30

Zoom on Input::Connect

10/22/2012

 On your LAN (of course)

 Performs a standard ARP scanning against all LAN IP addresses

 Gathers all live hosts

 Then performs an active fingerprinting of all live hosts

 Currently, you have to specify which target ports to test

 For IPv6

 Performs a standard ARP scanning against all LAN IPv4 addresses

 Gathers all live hosts

 Apply EUI-64 transform against MAC addresses

 You have the list of auto-configured link-local IPv6 addresses

 Then performs an active fingerprinting of all live hosts

 For IPv6, you didn’t thought of scanning the fe80::/64, did you?

31

Zoom on Input::ArpDiscover

10/22/2012

 p0fv3

 IPv4 and IPv6 passive fingerprinting

 TCP SYN and TCP SYN|ACK

 A very comprehensive signature database

 SinFP2

 IPv4 and IPv6 passive fingerprinting

 TCP SYN and TCP SYN|ACK

 No passive signature in the database

 A transform was applied on a fingerprint to make use of active signatures

 It was failure *

 Conclusion: SYN|ACK fingerprinting does not work

 SYN|ACKs are generated compared to the original SYN probe

 You don’t control how SYNs are generated by different equipments you are
monitoring

 So, there exists a multitude of SYN|ACK fingerprints for one unique operating
system (p0fv3 uses this approach)

* @GoulagParkinson: thanks for catching this up

32

SinFP passive fingerprinting (1/2) (time?)

10/22/2012

 SinFP3 approach:

 Only TCP SYNs are fingerprinted

 Signature database schema update to have passive signatures appart from

active signatures

 But still work in progress, not many signatures right now

 Need contributions, please send signatures to sinfp[AT]networecon.com

 I may have said it already ;)

 % sqlite3 bin/sinfp3.db

 sqlite> select count(*) from SignatureP;

 21

 sqlite> select count(*) from Signature;

 275

33

SinFP passive fingerprinting (2/2) (time?)

10/22/2012

 Improvements on matching algorithm

 No more manual deformation masks

 Computes a matching score for easy human comprehension

 Improvements on architecture allowing to

 Write new modules, like new matching algorithms or output methods

 Perform more than OS fingerprinting

 Improvements on passive fingerprinting

 But needs more signature (did I said that already?)

 Many more features

 Plugin to add signatures to the database by yourself

 Update database with –update-db

 Logging modules

 Design your own plugins … limitless?

 Follow @networecon to get informed of releases

 http://www.networecon.com/

34

Conclusion

10/22/2012

http://www.networecon.com/

35 10/22/2012

Questions? (I can haz a beer now?)

This document is for background informational purposes only. Some points may,

for example, be simplified. No guarantees, implied or otherwise, are intended

http://www.networecon.com/

Follow me @PatriceAuffret @networecon

http://www.networecon.com/

