
Desnos Anthony (ESIEA SI&S)

Implementation of K-ary 
Viruses in Python

« virus don't harm, 
ignorance does » 

herm1t



Desnos Anthony (ESIEA SI&S)

Implementation of K-ary 
Viruses in Python

● Outline 
– What's a k-ary virus ???

– Implementation

– Conclusion



Desnos Anthony (ESIEA SI&S)

Implementation of K-ary 
Viruses in Python

● What's a k-ary virus ?
–  Cohen's general model of computer viruses :

● every code is made of a single program which 
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● What's a k-ary virus ?
–  Cohen's general model of computer viruses :

● every code is made of a single program which 
contains the whole instructions devoted to its action

Since every virus is supposed to be composed of a single 
code, antiviral detection itself considers only this model
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● Scattered the viral information over 
differents files
– make the viral detection far more complex

The k constituting part looks like an innocent 
file and thus does not trigger any alert 



Desnos Anthony (ESIEA SI&S)

Implementation of K-ary 
Viruses in Python

● Definition (Éric Filiol) :
– A k-ary virus is a family of k files (some of them may 

be not executable) whose union constitues a computer 
virus and performs an offensive action that is 
equivalent to that of a true virus. Such a code is said 
sequential (serial mode) if the k constituent parts are 
acting strictly one after the another. It is said parallel if 
the k parts executes simultaneously (parallel mode).
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● Two modes :
– Class I (sequential)

●  codes are execting one after another

– Class II (parallel)
●  codes are executing at the same time
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● With 3 subclasses
– A subclass (dependent sequential codes)

● « Every part refers or contains a reference to the other ones. It is the weakest 
class in termof detection since successful detection of one part helps to 
detect the others. »

– B subclass (independent sequential codes)
● « No part is referring to another one. Detecting one part does not endanger 

the other ones. The detected part may be automatically replaced under a 
different form. »

– C subclass (weakly dependent sequential codes)
●  « Dependency between codes is partial and directed only. »
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● Class I (C and B subclasses)

– The most interesting 
● We must make N exploitations to execute the real 

virus

● Split our virus in differents parts :
– the first contains the encrypted viral payload

– the others contain the secret key

● Linux system

● C/ASM/Python



Desnos Anthony (ESIEA SI&S)

Implementation of K-ary 
Viruses in Python



Desnos Anthony (ESIEA SI&S)

Implementation of K-ary 
Viruses in Python

● Six steps :
– Generation of N separate entities, a main entity containing the viral 

payload (with or without information about secret key), and secondary 
entities which reconstruct the private key to activate the viral payload,

– The decryption routine,

– Loading of the python script through several techniques described in 
more detail in the following sections,

– Executing of python program, which decrypts with the help of other 
viruses the final payload,

– Loading of the decrypted payload which is in memory,

– The spread of the virus, in particular the generation of a new routine 
encryption and decryption, therefore, with a return to stage 1.
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● Polymorphic engine
– CLET Team (Polymorphic Shellcode Engine Using Spectrum Analysis, Phrack Magazine 61, 2004)

● Generate a ciphered code which is different at each generation, with 
different keys

– generate N reversible operations with N keys
● examples (simple operations) :

● XOR → XOR
● ADD → SUB
● ROL → ROR
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● Loading the script
– Contains a simple script (in python)

● In this script we have a buffer (or this script can 
download a buffer ...)

– which decrypt the final payload
● when the key is complete

How can I execute (stealth) my python script ??
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● Loading the script
– It's written in assembly language

● We can use /dev/shm
– tmpfs --> ramfs

● It's a memory file system !
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● Loading the script
– It's written in assembly language

● We can use ptrace
– Hijack open/read/close to load our own code which is in 

our memory ! 
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● Remote loading of python code
– We have download a remote python code which can be :

● in memory in the same process,
● in memory in another process,
● on internet, for example on pastebin.com

How can I execute a remote python code ??
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● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions

– We can use python module :
● « new » module : creation of run time internal objects

● with « module » function

mod = new.module (name)
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● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions

– We can use python module :
● « exec » module : which load a string (or an object of type 

file, or object code) in a context. This context should be the 
dictionary of our new module.

exec source in mod.__dict__
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● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions

– We can use python module :
● Once the module is in the context, it must be load
● « __import__ » function : returns the module

module = __import__( modulename )
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● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions
● « getattr » function : permits from the module to retrieve a 

class 

class_ = getattr ( module , classname )
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● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions
● « inspect » module : 

● « getargspec » function : to know for a function (thus, 
the case of constructor) the number of argument, the 
names and default values. 

arg = inspect.getargspec ( class.__init__ )[0]
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● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions
● Then the object is simply constructed with the class returned 

by getattr and the arguments are in parameters.

newinit = [ ]
arg.pop(0)
for i in arg :

newinit.append( i )
newargs = izip ( newinit, args )
d = {}
for i in newargs :

d[str ( i[0] )] = i[1]
obj = class(d)
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library (risk of a poor implementation),
● to use a library on the system.
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● Cryptographic library
– several problems for a virus

● to use a weak encryption,
● embedded a tested library or its own optimized 

library (risk of a poor implementation),
● to use a library on the system.

We have made the choice to use a library on the system, 
and therefore take full advantage of a variable present in a 
vast majority of Linux machines. 
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● Cryptographic library
– several problems for a virus

● to use a weak encryption,
● embedded a tested library or its own optimized 

library (risk of a poor implementation),
● to use a library on the system.

OPENSSL \o/
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● Cryptographic library
– Openssl in python ?

● Not in the default python installation 

CTYPES \o/
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● Cryptographic library
– Ctypes

● Load a dynamic library
– call its functions
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● Cryptographic library
– Ctypes

● Load libssl

OPENSSL_FILENAME = find_library ("ssl")
openssl = cdll.LoadLibrary(OPENSSL FILENAME)



Desnos Anthony (ESIEA SI&S)

Implementation of K-ary 
Viruses in Python

● Cryptographic library
– Ctypes

● RSA : generate new pairs of key

openssl.RAND_load_file ("/dev/random" , 2048)
rsa = c_void_p (openssl.RSA_generate_k e y (bits, 0x10001 , None , None ))
rsa_size = openssl.RSA_size (rsa.value)
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● Cryptographic library
– Ctypes

● RSA : Encrypt/Decrypt

o = create_string_buffer(rsa_size)
input = create_string_buffer(buffer[i:i+self.rsa_size - 11])
openssl.RSA_public_encrypt(len(input.raw) - 1, addressof(input), addressof(o), rsa.value, 1)

o = create_string_buffer(rsa_size)
input = create_string_buffer(buffer[i:i+self.rsa_size - 11])
openssl.RSA_public_encrypt(len(input.raw) - 1, addressof(input), addressof(o), rsa.value, 1)
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● Cryptographic library
– Ctypes

● RSA :  private key without encryption in the PEM 
format

rsa_private_key = ""
bio = c_void_p(self.openssl.BIO_new(openssl.BIO_s_mem()))
if openssl.PEM_write_bio_RSAPrivateKey(bio.value, rsa.value, None, None) == 1:
                    temp = c_char_p()
                    bufpriv_len = openssl.BIO_ctrl(bio.value, 3, 0, addressof(temp))
                    tmp = temp.value
                    rsa_private_key = tmp[0:bufpriv_len]
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● Cryptographic library
– Ctypes

● AES

class AES_KEY(Structure):
    _fields_ = (
        ("rd_key", c_uint * 60),
        ("rounds", c_int),
        )
        
enc_key = AES_KEY()
dec_key = AES_KEY()

openssl.AES_set_encrypt_key(key, 16 * 8, addressof(enc_key))
openssl.AES_set_decrypt_key(key, 16 * 8, addressof(dec_key))
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● Cryptographic library
– Ctypes

● AES

o = create_string_buffer(16)
openssl.AES_encrypt(buffer[i:i+16], addressof(o), addressof(enc_key))

o2 = create_string_buffer(16)
openssl.AES_decrypt(addressof(o), addressof(o2), addressof(dec_key))
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● Our main problem is to protect our final 
payload 
– We have enciphered it, but it remains the problem 

of the storage of the key
● If the key is contained in the same source code that the virus, 

then it is very easy for an analyst to find it
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● Our main problem is to protect our final 
payload 
– We have enciphered it, but it remains the problem 

of the storage of the key
– If the key is contained in the same source code that the 

virus, then it is very easy for an analyst to find it

K -ary viruses can provide an elegant solution to this problem.
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● K-ary virus in sequential mode, C subclass
– weakly dependent sequential codes

– split our key in equal parts
● in some cases that could allow an analyst to have 

all parts of the key
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● K-ary virus in sequential mode, C subclass
– weakly dependent sequential codes

– split our key in equal part but also randomly
● thus it is impossible for an analyst to retrieve the 

key without having all different codes
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payload 
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● missed exploits
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● K-ary virus in sequential mode, B subclass
– independent sequential codes

– the previous subclass has a big flaw, all codes 
must arrived in the target to start the final 
payload 

● packets drop
● missed exploits

 it is possible that a code can't arrive and therefore that the 
spread doesn't continue !
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– not dependent and can regenerate themselves

● so if there was a threshold on the different codes 
generated for the reconstruction of the key without that 
the totality reaches the destination, or the activation of 
the final charge after a given time

– it would continue the spread
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● K-ary virus in sequential mode, B subclass
– not dependent and can regenerate themselves

● so if there was a threshold on the different codes 
generated for the reconstruction of the key without that 
the totality reaches the destination, or the activation of 
the final charge after a given time

– it would continue the spread

 secret share schemes
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● K-ary virus in sequential mode, B subclass
– secret share schemes

● the main goal is to divide a data D into n pieces   
D1 ....Dn in the following manner between different 
participants

– knowledge of any k or more Di pieces makes D 
easily computable,

– knowledge of any k - 1 or fewer Di pieces leaves D 
completely undetermined.
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● K-ary virus in sequential mode, B subclass
– Shamir's secret sharing

● 2 points are sufficient to define a line, 
● 3 points are sufficient to define a parabola,
● 4 points are sufficient to define a cubic curve,
● ...
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● K-ary virus in sequential mode, B subclass
– Shamir's secret sharing

● take k points to define a polynomial of degree k – 1
● To build the polynomial, choose at random (k - 1) 

coefficients            , and let be   the secret :a1, ... ,ak−1 a0

f x =a0a1 xa2 x2a3 x3·· ·ak −1 x
k −1
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● K-ary virus in sequential mode, B subclass
– Shamir's secret sharing

● Every participant (in our case, every virus) is given 
from a point X of this system, a pair (X, f (X)) 
(where each X must be different). When k 
participants are present, the secret can be found, 
otherwise it is impossible to recover it.
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● K-ary virus in sequential mode, B subclass

– Shamir's secret sharing
● Our secret is our private key, a simple solution to handle our 

key is to transform it into PEM format, and convert it into a big 
integer

– Another solution isn't to share the private key but the password which 
encrypt the key, this reduces the computing time and the data 
exchanges.

● Python def str2long(s):
    """Convert a string to a long integer."""
    if type(s) not in (types.StringType, types.UnicodeType):
        raise ValueError, 'the input must be a string'
    l = 0L
    for i in s:
        l <<= 8
        l |= ord(i)
    return l
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● K-ary virus in sequential mode, B subclass
– Neville-Aitken's algorithm

● Once a virus arrived with its pair (X, f (X)), we must be able to find the secret 
(our a0). To do this we can use Neville-Aitken 's algorithm to find a coefficient, 
that allows to calculate any degree of the polynomial :

pi , i  x = y i,0≤ i≤ n , pi , j  x =
 x− x j  pi , j−1 x  xi− x  pi1, j  x

x i−x j
,0≤ i j≤ n.
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● K-ary virus in sequential mode, B subclass
– Neville-Aitken's algorithm

● In this case, we want the coefficient of degree 0 
(which is the key or the password):

pi , i  x = y i,0≤ i≤n , pi , j  x =
0− x j pi , j−1 x x i−0  pi1, j x

xi−x j
,0≤i j ≤n.
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● K-ary virus in sequential mode, B subclass
– Neville-Aitken's algorithm

● This algorithm has a space and time complexity 
both in O(n2), and can be implemented easily in 
python

    def interpolate(x0, y0, x1, y1, x) :
        return (y0*(x-x1) - y1*(x-x0)) / (x0 - x1);

    def solveSystem(xs, ys):
        for i in range(1, len(xs)) :
            for k in range(0, len(xs) - i) :
                ys[k] = interpolate(xs[k], ys[k], xs[k+i], ys[k+1], 0)

        return ys[0]
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 ./shamir.py toto
SECRET toto => TO LONG 1953461359
HASH SECRET 
31f7a65e315586ac198bd798b6629ce4903d0899476d5741a9f32e2e521b6a66
f(x) = 1953461359  + 1082694448 x^1 + 100363181 x^2 
POINT[1] = 3136518988
POINT[2] = 4520302979
POINT[3] = 6104813332
POINT[4] = 7890050047
POINT[5] = 9876013124
POINT[6] = 12062702563
Running Neville's algorithm :  Found x[0]
SECRET = toto
HASH = 31f7a65e315586ac198bd798b6629ce4903d0899476d5741a9f32e2e521b6a66
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Desnos Anthony (ESIEA SI&S)

Implementation of K-ary 
Viruses in Python

● Conclusion
– K-ary viruses provide an interesting solution to 

share the key in a virus

– K-ary viruses are a profound change in the 
way of analysis from the point of view of anti-
virus
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Many thanks for your attention! 
Have you any question... ?

Happy Hacking !

Thanks to Hack.lu
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