
Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

« virus don't harm,
ignorance does »

herm1t

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Outline
– What's a k-ary virus ???

– Implementation

– Conclusion

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● What's a k-ary virus ?
– Cohen's general model of computer viruses :

● every code is made of a single program which
contains the whole instructions devoted to its action

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● What's a k-ary virus ?
– Cohen's general model of computer viruses :

● every code is made of a single program which
contains the whole instructions devoted to its action

Since every virus is supposed to be composed of a single
code, antiviral detection itself considers only this model

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Scattered the viral information over
differents files
– make the viral detection far more complex

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Scattered the viral information over
differents files
– make the viral detection far more complex

The k constituting part looks like an innocent
file and thus does not trigger any alert

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Definition (Éric Filiol) :
– A k-ary virus is a family of k files (some of them may

be not executable) whose union constitues a computer
virus and performs an offensive action that is
equivalent to that of a true virus. Such a code is said
sequential (serial mode) if the k constituent parts are
acting strictly one after the another. It is said parallel if
the k parts executes simultaneously (parallel mode).

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Two modes :
– Class I (sequential)

● codes are execting one after another

– Class II (parallel)
● codes are executing at the same time

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● With 3 subclasses
– A subclass (dependent sequential codes)

● « Every part refers or contains a reference to the other ones. It is the weakest
class in termof detection since successful detection of one part helps to
detect the others. »

– B subclass (independent sequential codes)
● « No part is referring to another one. Detecting one part does not endanger

the other ones. The detected part may be automatically replaced under a
different form. »

– C subclass (weakly dependent sequential codes)
● « Dependency between codes is partial and directed only. »

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Class I (C and B subclasses)

– The most interesting
● We must make N exploitations to execute the real

virus

● Split our virus in differents parts :
– the first contains the encrypted viral payload

– the others contain the secret key

● Linux system

● C/ASM/Python

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Six steps :
– Generation of N separate entities, a main entity containing the viral

payload (with or without information about secret key), and secondary
entities which reconstruct the private key to activate the viral payload,

– The decryption routine,

– Loading of the python script through several techniques described in
more detail in the following sections,

– Executing of python program, which decrypts with the help of other
viruses the final payload,

– Loading of the decrypted payload which is in memory,

– The spread of the virus, in particular the generation of a new routine
encryption and decryption, therefore, with a return to stage 1.

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Polymorphic engine
– CLET Team (Polymorphic Shellcode Engine Using Spectrum Analysis, Phrack Magazine 61, 2004)

● Generate a ciphered code which is different at each generation, with
different keys

– generate N reversible operations with N keys
● examples (simple operations) :

● XOR → XOR
● ADD → SUB
● ROL → ROR

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Loading the script
– Contains a simple script (in python)

● In this script we have a buffer (or this script can
download a buffer ...)

– which decrypt the final payload
● when the key is complete

How can I execute (stealth) my python script ??

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Loading the script
– It's written in assembly language

● We can use /dev/shm
– tmpfs --> ramfs

● It's a memory file system !

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Loading the script
– It's written in assembly language

● We can use ptrace
– Hijack open/read/close to load our own code which is in

our memory !

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Remote loading of python code
– We have download a remote python code which can be :

● in memory in the same process,
● in memory in another process,
● on internet, for example on pastebin.com

How can I execute a remote python code ??

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions

– We can use python module :
● « new » module : creation of run time internal objects

● with « module » function

mod = new.module (name)

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions

– We can use python module :
● « exec » module : which load a string (or an object of type

file, or object code) in a context. This context should be the
dictionary of our new module.

exec source in mod.__dict__

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions

– We can use python module :
● Once the module is in the context, it must be load
● « __import__ » function : returns the module

module = __import__(modulename)

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions
● « getattr » function : permits from the module to retrieve a

class

class_ = getattr (module , classname)

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions
● « inspect » module :

● « getargspec » function : to know for a function (thus,
the case of constructor) the number of argument, the
names and default values.

arg = inspect.getargspec (class.__init__)[0]

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Remote loading of python code
– a simple python class LoadingRemoteModule

● which gets the buffer, creates classes and calls functions
● Then the object is simply constructed with the class returned

by getattr and the arguments are in parameters.

newinit = []
arg.pop(0)
for i in arg :

newinit.append(i)
newargs = izip (newinit, args)
d = {}
for i in newargs :

d[str (i[0])] = i[1]
obj = class(d)

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– several problems for a virus

● to use a weak encryption,
● embedded a tested library or its own optimized

library (risk of a poor implementation),
● to use a library on the system.

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– several problems for a virus

● to use a weak encryption,
● embedded a tested library or its own optimized

library (risk of a poor implementation),
● to use a library on the system.

We have made the choice to use a library on the system,
and therefore take full advantage of a variable present in a
vast majority of Linux machines.

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– several problems for a virus

● to use a weak encryption,
● embedded a tested library or its own optimized

library (risk of a poor implementation),
● to use a library on the system.

OPENSSL \o/

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– Openssl in python ?

● Not in the default python installation

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– Openssl in python ?

● Not in the default python installation

CTYPES \o/

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– Ctypes

● Load a dynamic library
– call its functions

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– Ctypes

● Load libssl

OPENSSL_FILENAME = find_library ("ssl")
openssl = cdll.LoadLibrary(OPENSSL FILENAME)

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– Ctypes

● RSA : generate new pairs of key

openssl.RAND_load_file ("/dev/random" , 2048)
rsa = c_void_p (openssl.RSA_generate_k e y (bits, 0x10001 , None , None))
rsa_size = openssl.RSA_size (rsa.value)

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– Ctypes

● RSA : Encrypt/Decrypt

o = create_string_buffer(rsa_size)
input = create_string_buffer(buffer[i:i+self.rsa_size - 11])
openssl.RSA_public_encrypt(len(input.raw) - 1, addressof(input), addressof(o), rsa.value, 1)

o = create_string_buffer(rsa_size)
input = create_string_buffer(buffer[i:i+self.rsa_size - 11])
openssl.RSA_public_encrypt(len(input.raw) - 1, addressof(input), addressof(o), rsa.value, 1)

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– Ctypes

● RSA : private key without encryption in the PEM
format

rsa_private_key = ""
bio = c_void_p(self.openssl.BIO_new(openssl.BIO_s_mem()))
if openssl.PEM_write_bio_RSAPrivateKey(bio.value, rsa.value, None, None) == 1:
 temp = c_char_p()
 bufpriv_len = openssl.BIO_ctrl(bio.value, 3, 0, addressof(temp))
 tmp = temp.value
 rsa_private_key = tmp[0:bufpriv_len]

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– Ctypes

● AES

class AES_KEY(Structure):
 fields = (
 ("rd_key", c_uint * 60),
 ("rounds", c_int),
)

enc_key = AES_KEY()
dec_key = AES_KEY()

openssl.AES_set_encrypt_key(key, 16 * 8, addressof(enc_key))
openssl.AES_set_decrypt_key(key, 16 * 8, addressof(dec_key))

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Cryptographic library
– Ctypes

● AES

o = create_string_buffer(16)
openssl.AES_encrypt(buffer[i:i+16], addressof(o), addressof(enc_key))

o2 = create_string_buffer(16)
openssl.AES_decrypt(addressof(o), addressof(o2), addressof(dec_key))

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Our main problem is to protect our final
payload
– We have enciphered it, but it remains the problem

of the storage of the key
● If the key is contained in the same source code that the virus,

then it is very easy for an analyst to find it

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Our main problem is to protect our final
payload
– We have enciphered it, but it remains the problem

of the storage of the key
– If the key is contained in the same source code that the

virus, then it is very easy for an analyst to find it

K -ary viruses can provide an elegant solution to this problem.

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, C subclass
– weakly dependent sequential codes

– split our key in equal parts
● in some cases that could allow an analyst to have

all parts of the key

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, C subclass
– weakly dependent sequential codes

– split our key in equal part but also randomly
● thus it is impossible for an analyst to retrieve the

key without having all different codes

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, C subclass

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, C subclass

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– independent sequential codes

– the previous subclass has a big flaw, all codes
must arrived in the target to start the final
payload

● packets drop
● missed exploits

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– independent sequential codes

– the previous subclass has a big flaw, all codes
must arrived in the target to start the final
payload

● packets drop
● missed exploits

 it is possible that a code can't arrive and therefore that the
spread doesn't continue !

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– not dependent and can regenerate themselves

● so if there was a threshold on the different codes
generated for the reconstruction of the key without that
the totality reaches the destination, or the activation of
the final charge after a given time

– it would continue the spread

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– not dependent and can regenerate themselves

● so if there was a threshold on the different codes
generated for the reconstruction of the key without that
the totality reaches the destination, or the activation of
the final charge after a given time

– it would continue the spread

 secret share schemes

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– secret share schemes

● the main goal is to divide a data D into n pieces
D1Dn in the following manner between different
participants

– knowledge of any k or more Di pieces makes D
easily computable,

– knowledge of any k - 1 or fewer Di pieces leaves D
completely undetermined.

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– Shamir's secret sharing

● 2 points are sufficient to define a line,
● 3 points are sufficient to define a parabola,
● 4 points are sufficient to define a cubic curve,
● ...

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– Shamir's secret sharing

● take k points to define a polynomial of degree k – 1
● To build the polynomial, choose at random (k - 1)

coefficients , and let be the secret :a1, ... ,ak−1 a0

f x =a0a1 xa2 x2a3 x3·· ·ak −1 x
k −1

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– Shamir's secret sharing

● Every participant (in our case, every virus) is given
from a point X of this system, a pair (X, f (X))
(where each X must be different). When k
participants are present, the secret can be found,
otherwise it is impossible to recover it.

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass

– Shamir's secret sharing
● Our secret is our private key, a simple solution to handle our

key is to transform it into PEM format, and convert it into a big
integer

– Another solution isn't to share the private key but the password which
encrypt the key, this reduces the computing time and the data
exchanges.

● Python def str2long(s):
 """Convert a string to a long integer."""
 if type(s) not in (types.StringType, types.UnicodeType):
 raise ValueError, 'the input must be a string'
 l = 0L
 for i in s:
 l <<= 8
 l |= ord(i)
 return l

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– Neville-Aitken's algorithm

● Once a virus arrived with its pair (X, f (X)), we must be able to find the secret
(our a0). To do this we can use Neville-Aitken 's algorithm to find a coefficient,
that allows to calculate any degree of the polynomial :

pi , i  x = y i,0≤ i≤ n , pi , j  x =
 x− x j  pi , j−1 x  xi− x  pi1, j  x

x i−x j
,0≤ i j≤ n.

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– Neville-Aitken's algorithm

● In this case, we want the coefficient of degree 0
(which is the key or the password):

pi , i  x = y i,0≤ i≤n , pi , j  x =
0− x j pi , j−1 x x i−0  pi1, j x

xi−x j
,0≤i j ≤n.

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass
– Neville-Aitken's algorithm

● This algorithm has a space and time complexity
both in O(n2), and can be implemented easily in
python

 def interpolate(x0, y0, x1, y1, x) :
 return (y0*(x-x1) - y1*(x-x0)) / (x0 - x1);

 def solveSystem(xs, ys):
 for i in range(1, len(xs)) :
 for k in range(0, len(xs) - i) :
 ys[k] = interpolate(xs[k], ys[k], xs[k+i], ys[k+1], 0)

 return ys[0]

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

 ./shamir.py toto
SECRET toto => TO LONG 1953461359
HASH SECRET
31f7a65e315586ac198bd798b6629ce4903d0899476d5741a9f32e2e521b6a66
f(x) = 1953461359 + 1082694448 x^1 + 100363181 x^2
POINT[1] = 3136518988
POINT[2] = 4520302979
POINT[3] = 6104813332
POINT[4] = 7890050047
POINT[5] = 9876013124
POINT[6] = 12062702563
Running Neville's algorithm : Found x[0]
SECRET = toto
HASH = 31f7a65e315586ac198bd798b6629ce4903d0899476d5741a9f32e2e521b6a66

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● K-ary virus in sequential mode, B subclass

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

● Conclusion
– K-ary viruses provide an interesting solution to

share the key in a virus

– K-ary viruses are a profound change in the
way of analysis from the point of view of anti-
virus

Desnos Anthony (ESIEA SI&S)

Implementation of K-ary
Viruses in Python

Many thanks for your attention!
Have you any question... ?

Happy Hacking !

Thanks to Hack.lu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

