Browser Rootkits

Christophe Devaux - christophe.devaux@sogeti.com Julien Lenoir - julien.lenoir@sogeti.com

Sogeti ESEC R&D

Agenda

- Introduction
- 2 Rootkit for Firefox
- 3 Rootkit for Internet Explorer

2/46

Introduction

Why design a web browser rootkit?

Today's browsers

- Browsers are getting so complex that they can be considered as operating systems
- Browsers are usually allowed to access the Internet

Constraints

- Be as furtive as we can
- Be exploitable with user rights only

FIREFOX

4/46

Content

- Introduction
- Rootkit for Firefox
 - One add-on to rule them all
 - Hide the devil inside
 - Communication and Spreading
 - Payloads
 - Conclusion
- 3 Rootkit for Internet Explorer

5/46

Main principles

Build a Firefox add-on like a traditionnal rootkit kernel module

Attributes:

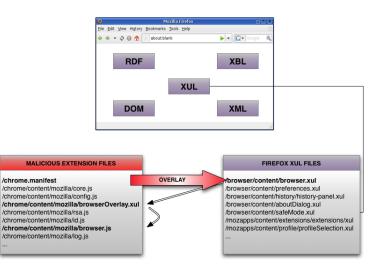
- Loads and becomes persistent
- Hides itself (from the browser scope)
- Communicates and answers to orders

Constraints:

- Exploitation with minimal user rights
- Focus on the stealth of the solution
- Multiplatforms

What is an extension?

An extension...


- is a simple compressed file with JavaScript/XUL/CSS/binaries/...
- can be platform independent
- adds overlays on Firefox XUL files

An overlay provides a mechanism for:

- adding new user interfaces
- overriding pieces of an existing XUL file
- reusing particular pieces of the user interface

With an overlay on browser.xul, we can control the main Firefox window.

What is an extension?

4 D > 4 D > 4 D > 4 D > -

Installation

Traditional installation:

XPI package installed by social engineering, emails, P2P, ...

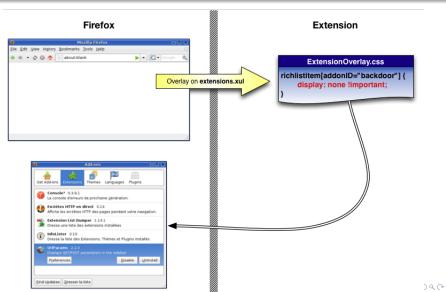
Using an infector:

Executable which edits Firefox Extensions Manager files

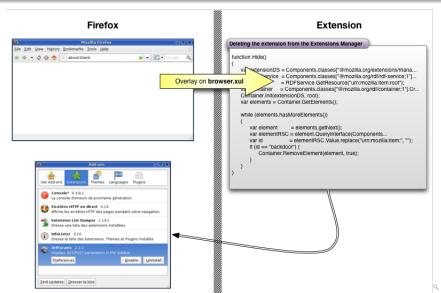
Using a vulnerability in Firefox:

Which allows a code execution (MFSA 2008-34, MFSA 2008-41, ...)

Content


- Introduction
- Rootkit for Firefox
 - One add-on to rule them all
 - Hide the devil inside
 - Communication and Spreading
 - Payloads
 - Conclusion
- 3 Rootkit for Internet Explorer

Hide the extension


Three methods:

- Using a Cascading Style Sheets file:
 - User doesn't see the extension
- Removing the extension from the Extensions Manager component:
 - Firefox doesn't see the extension
- Infecting an already installed extension:
 - Traditional virus behavior

Hide the extension

Hide the extension

Content

- Introduction
- 2 Rootkit for Firefox
 - One add-on to rule them all
 - Hide the devil inside
 - Communication and Spreading
 - Payloads
 - Conclusion
- 3 Rootkit for Internet Explorer

13/46

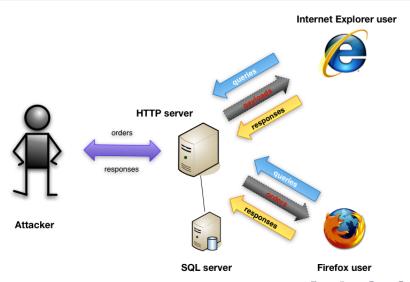
Browser Rootkits

Communication

Communication process:

- Communication with an external HTTP(S) server: Bypass firewalls
- XMLHttpRequest
- Ask, execute, send back to master
- Encrypted protocol (not fully implemented) using RSA and RC4

Communication: the attacker webcontrol


Why use web server to control browser rootkits?

- Browsers communicate by nature with web servers
- Sending, receiving and parsing HTTP/XML requests is supported natively by web browsers

Remark

The web server can easily be hidden using a fast flux like method

Global architecture

Spreading

Spreading mechanisms:

- Traditional ways: mails, P2P, others worms, ...
- Hooks on webmails forms: catch emails and add an infector as attachment
- Harvest all emails in web pages (Firefox can send emails by itself)

Browser Rootkits

Content

- Introduction
- 2 Rootkit for Firefox
 - One add-on to rule them all
 - Hide the devil inside
 - Communication and Spreading
 - Payloads
 - Conclusion
- 3 Rootkit for Internet Explorer

XPCOM

XPCOM (Cross Platform Component Object Model)

- multiple language bindings
- includes interfaces for:
 - Component management
 - File abstraction
 - Object message passing
 - Memory management

	Component	Interface	Method
Passwords	login-manager	nslLoginManager	getAllLogins()
Cookies	cookiemanager	nslCookieManager	enumerator
Bookmarks	nav-bookmarks-service	nsINavBookmarksService	executeQuery()
History	nav-history-service	nsINavHistoryService	executeQuery()
Execute	process/utils	nsIProcess	run()
Use socket	network/socket-transport-service	nsISocketTransportService	CreateTransport()

AddEventListener

AddEventListener

- Associates a function with a particular event
- Useful to spy on the user activity

Action	Event to listen	
a tab is open	DOMContentLoaded	log browsing
a tab is close	TabClose, unload	log browsing
a key is press	keypress	keylogger

- Logging is completed by HTTP headers sniffing
- Logs are stored encrypted in the browser cache

Payloads

From there, anything is possible $\stackrel{\smile}{\cup}$

- Passwords/Cookies/Bookmarks/History stealer
- Keylogger
- ConnectBack
- Sniffer (HTTP requests)
- Botnet
- Spam platform
- Disable teflon :)
- ...

21/46

Demo

Content

- Introduction
- 2 Rootkit for Firefox
 - One add-on to rule them all
 - Hide the devil inside
 - Communication and Spreading
 - Payloads
 - Conclusion
- 3 Rootkit for Internet Explorer

Conclusion

- A real design problem and no real solution
- Malicious Firefox extensions are easy to develop
- There is NO security about extensions in Firefox

We would not be surprised to see this kind of spyware spread in the future

INTERNET EXPLORER 7

Content

- Introduction
- 2 Rootkit for Firefox
- Rootkit for Internet Explorer
 - Overview of Internet Explorer security model
 - Security zones
 - Security zones internals
 - Rootkit architecture proposal
 - Injector
 - Core
 - Communication Backdoor
 - Payloads
 - Conclusion

26/46

Security zones

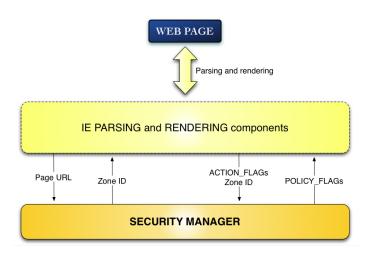
Five security zones

- Local computer: web pages on local hard drives
- Intranet: web pages on the intranet
- Trusted sites: whitelist of trusted web sites
- Internet: all pages that do not match any other zone
- Restricted sites: blacklist of restricted web sites

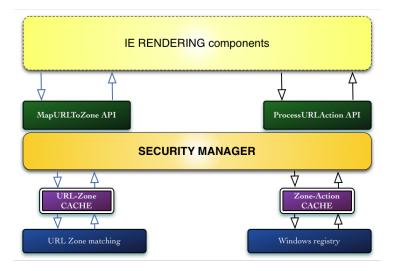
Security flags

ACTION FLAGs

Represent all actions that can be taken in a security zone


POLICY FLAGs

Represent how the browser will react to a required ACTION_FLAG


Security policy

Each zone has its own set of ACTION_FLAGs and POLICY_FLAGs which defines its security

Security applied to a web page

Security manager overview

30/46

Content

- Introduction
- 2 Rootkit for Firefox
- Rootkit for Internet Explorer
 - Overview of Internet Explorer security model
 - Security zones
 - Security zones internals
 - Rootkit architecture proposal
 - Injector
 - Core
 - Communication Backdoor
 - Payloads
 - Conclusion

Internet Explorer rootkit

Constraints

- Being usable with user's rights
- All in memory architecture to be furtive
- Using IE functionnalities to be furtive

Why not use a Browser Helper Object?

- BHOs require high level privileges to be installed
- BHOs leave fingerprints in the registry
- BHOs are signed and checked by IE

Howto

Let http://evilsite be the rootkit owner's webserver address

Howtos

- Get high level privileges for pages hosted on http://evilsite
- Load pages and execute them without beeing seen
- Stay connected to the attacker via http://evilsite

Injector

The purpose of the injector is to inject our rootkit code inside IE's context

Methods that may be employed

- Inject the code using another process on the victim's computer
- Inject the code remotely using a vulnerability
- Inject the code using a malicious plug-in

We focus on rootkit architecture so we are using a simple dll injection

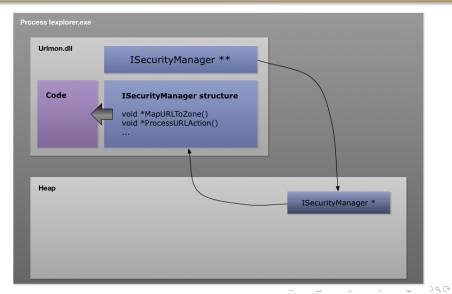
Granting privileges: security manager cache poisonning

URL-Zone cache

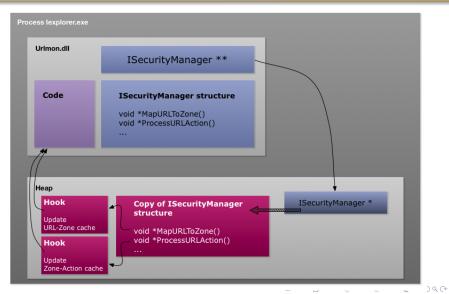
Corrupting URL-Zone cache to map http://evilsite to the zone we want

Zone-Action cache

Corrupting Zone-Action cache to give high privileges to the zone http://evilsite is mapped to


Results

http://evilsite will have high privileges


Problem

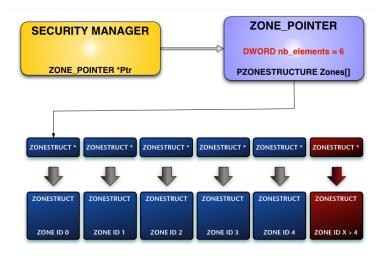
How to keep cache corrupted?

Hooking the security manager

Hooking the security manager

Hooking the security manager

Results


 Caches will remain corrupted regardless to the registry configuration and user's actions

Problem

Any other site in the corrupted zone will have high privileges

4 D > 4 B > 4 B > -

Adding a new zone

Adding a new zone

Results

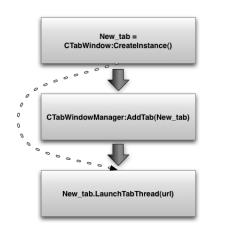
- Only http://evilsite is mapped to the newly created zone
- The newly created zone will get its rights increased, default zones' configurations will not be modified

Problem

Some functionalities are still unavailable in new zones

Loading and executing pages: invisible tab

Internet Explorer 7 is a multitab browser: What about loading and executing http://evilsite pages in a new tab?


Problem

Creating a new tab is anything but furtive!

Answer

Create an invisible tab...

Loading and executing pages: invisible tab

Creating a new tab

Referencing new tab in the tab manager

Starting new tab execution

Communication web page

The communication web page is loaded by the invisible tab

Technology used

Javascript and AJAX.

Actions

- Gets queued orders from attacker's web server
- Loads payloads
- Executes payloads
- Sends back results to attacker's web server

Payloads

Payloads implement functionalities offered by the rootkit

Technology

- Javascript
- ActiveX scripts

Fonctionalities

- Create / Read / Write / Delete files on and from victim's computer
- Read / Write into windows registry
- Create processes

INTERNET EXPLORER 7

Content

- Introduction
- 2 Rootkit for Firefox
- Rootkit for Internet Explorer
 - Overview of Internet Explorer security model
 - Security zones
 - Security zones internals
 - Rootkit architecture proposal
 - Injector
 - Core
 - Communication Backdoor
 - Payloads
 - Conclusion

Conclusion about Internet Explorer 7 rootkit

Browser rootkits are analogous to kernel rookit

- Creating new browser objects (tabs, zones)
- Using browser internal functions

Furtiveness

• Entirely in memory approach: allocating new memory or modifying existing data

To do

- Make the rootkit persistent to IE process re-launch or computer reboot
- Make new zones fully functional