
gFuzz: An instrumented Web application
fuzzing environment

Ezequiel D. Gutesman

Corelabs

Core Security Technologies

Objectives

• () Present a working tool prototype to test the
 . security of a given web application The tool tests

 () :for SQL injection attacks

• ' From the attacker s perspective

• & Intended to be included in QA process security
. audits Bringing precise information about potential

 . security flaws Not limited to security experts

• () Has high er accuracy than plain fuzzing and
 automated static analysis by themselves

• :Technique

– Fuzzing

– Instrumentation

Agenda

• (!) quick Web application security overview

• - -SQL injection attacks inside out

• Fuzzing and gFuzz

• Detecting An O Ali Es with gFuzz

• Reporting

• Demo

• Future work

m

Agenda

• (!) quick Web application security overview

• - -SQL injection attacks inside out

• Fuzzing and gFuzz

• Detecting An O AliEs with gFuzz

• Reporting

• Demo

• Future work

m

Why Web Applications?

• - Common entry point for back end system
 and database access

• Widely used

• Easy to develop

– Scripting languages

– Inexperienced programmers are not
-security aware

• (+) Difficult to fuzz validate errors with low
 false positive rate

Web application (in)security

• XSS

• Malicious File execution

• Insecure Direct Object Reference

• CSRF

• Information Leakage and Error
handling

• . , Broken auth session management

Top Vulnerabilities (From OWASP Top 10 - 2007)

● Injection Vulns (particularly SQL)

Consequences (SQL-injection)

• Data theft

• Data unavailability

• Data alteration

• Money losses

• And much more

Agenda

• (!) quick Web application security overview

• - -SQL injection attacks inside out

• Fuzzing and gFuzz

• Detecting An O AliEs with gFuzz

• Reporting

• Demo

• Future work

m

SQL injection facts

• It is an injection attack

– () It happens when malicious input sent by an
 - attacker reaches the back end DBMS engine

– The attacker can execute queries which
 “ ” .were supposedly not allowed

• Are widely known inside the security
community

– , Yet developers still fail in avoiding them

Web application (in)security

User-supplied data

Direct usage to query database

The SQL injection problem: Basic idea

<?php

$client_id = $_POST[“id”];

$client = mysql_query(“SELECT * FROM clients WHERE id = ” . $client_id);

Supplying data

SELECT * FROM clients WHERE id = 3

$_POST[“id”] ← 3

client.id client.name
 3 John Doe

CLIENT

SERVER

<?php

$client_id = $_POST[“id”];
$client = mysql_query(“SELECT * FROM clients WHERE id = ” . $client_id);

Supplying [offensive] data

SELECT * FROM clients WHERE id = 0 or 1=1

$_POST[“id”] ← 0 or 1=1

client.id client.name
 1 George W
 3 John Doe
 4 Martin Green
 5 Joshua B
 76 Ellen Grant
 8 Mark Twain

CLIENTCLIENT

SERVER

<?php

$client_id = $_POST[“id”];
$client = mysql_query(“SELECT * FROM clients WHERE id = ” . $client_id);

Countermeasure technologies

• (& -)Web Application firewalls IDS IPS

• Static code analysis tools

• Dynamic code analysis tools

• Scanners

• Code audits

Agenda

• (!) quick Web application security overview

• - -SQL injection attacks inside out

• Fuzzing and gFuzz

• Detecting An O AliEs with gFuzz

• Reporting

• Demo

• Future work

m

Fuzzing (general)

Detect input vectors

S
ub

m
it

sp
ec

ia
lly

-

cr
af

te
d

/ r
an

do
m

 d
at

a
M

onitor for

exceptions

Refine / classify

Crawling /
Spidering

Heuristics

• Exception monitoring is not trivial
– “ ”?Which are REAL exceptions

• Classification is not trivial
– Difficult to distinguish between real

 ()vulns and false positives or negatives

• Validation and discovery heuristics are
 commonly used

– Error message detection

– Sent text reflected

– , Timing and other

• Relating Fuzz vectors with exceptions and
 vulns is difficult

Web Application fuzzing

gFuzz's approach

Fuzzing

Character-grained taint analysis
(aka. Core GRASP)

Grammar-based analysis

+

+

A LOT of information!

Agenda

• (!) quick Web application security overview

• - -SQL injection attacks inside out

• Fuzzing and gFuzz

• Detecting A nO Ali Es with gFuzz

• Reporting

• Demo

• Future work

m

Character-grained taint analysis

• - Run time instrumentation

• “ ” - It paints attacker controlled
 characters as tainted and propagates

 .taint information during execution
<form action=”process.php”>

 <input type=”text” name=”id”>

 <input type=”submit” value=“Query client”>

</form>

CLIENT SERVER

0 or 1=1 0 or 1=1

Character-grained taint analysis (cont)

Scripting language Interpreter (PHP)

DBMS

$_POST

SELECT * FROM clients WHERE id = 0 or 1=1

SELECT * FROM clients
WHERE user like 'john'
AND password = password('aaa')
OR 1 = 1; --)

Character-grained taint analysis & gFuzz

• Data is marked from untrusted
 (. ., ,)sources e g GET POST

• Taint marks are propagated between
 string operations during execution

• GRASP sends information about
 (executed queries to gFuzz from

 !)inside the interpreter

gFuzz entry sent by GRASP

<GRASP_FUZZ_ENTRY>

 <GRASP_QUERY_ID>

 /location/of/the/executed/file/userlogin.php:40

 </GRASP_QUERY_ID>

 <GRASP_FUZZ_IS_ATTACK>0</GRASP_FUZZ_IS_ATTACK>

 <GRASP_FUZZ_QUERY>

 SELECT name,email FROM users WHERE username=’bob’ and password=’foo’

 </GRASP_FUZZ_QUERY>

 <GRASP_FUZZ_QUERY_MARK>

 ...XXX................XXX.

 </GRASP_FUZZ_QUERY_MARK>

</GRASP_FUZZ_ENTRY>

gFuzz entry sent by GRASP

<GRASP_FUZZ_ENTRY>

 <GRASP_QUERY_ID>

 /location/of/the/executed/file/userlogin.php:40

 </GRASP_QUERY_ID>

 <GRASP_FUZZ_IS_ATTACK>0</GRASP_FUZZ_IS_ATTACK>

 <GRASP_FUZZ_QUERY>

 SELECT name,email FROM users WHERE username=’bob’ and password=’foo’

 </GRASP_FUZZ_QUERY>

 <GRASP_FUZZ_QUERY_MARK>

 ...XXX................XXX.

 </GRASP_FUZZ_QUERY_MARK>

</GRASP_FUZZ_ENTRY>

Grammatical analysis of SQL queries

SELECT

username email FROM

users

WHERE

SELECT name,email FROM users

WHERE username=’bob’ and password=’foo’

= =

and

username bob password foo

Grammatical analysis + taint marks

SELECT

username email FROM

users

WHERE

SELECT name,email FROM users

WHERE username=’bob’ and password=’foo’

= =

and

username bob password foo

Evil inputs...

Grammatical analysis

SELECT

username email FROM

users

WHERE

SELECT name,email FROM users

WHERE username=’evil’ and password=’none' or 1=1;--’

= =

and

username evil password none

or

=

1 1

Grammatical analysis + taint marks

SELECT

username email FROM

users

WHERE

SELECT name,email FROM users

WHERE username=’evil’ and password=’none' or 1=1;--’

= =

and

username evil password none

or

=

1 1

SQL Gramar

SQL Parsers
& helpers

GUI

 Fuzzer

Altogether

Web server gFuzz

GRASP
enabled

PHP

Apache
WS

Attack
Verification

logic
HTTP Request

HTTP Response

Executed Queries

<GRASP_FUZZ_ENTRY>
 <GRASP_QUERY_ID>
 /location/of/the/executed/file/userlogin.php:40
 </GRASP_QUERY_ID>
 <GRASP_FUZZ_IS_ATTACK>0</GRASP_FUZZ_IS_ATTACK>

Attack verification - witnesses

• “ ” The fuzzer sends witness requests
– Not always possible

– ():How to choose witness strings heuristic
SELECT *
FROM users
WHERE
 username = ' '
AND
 password = ' '

SELECT *
FROM users
WHERE
 username =
AND
 password =

SELECT *
FROM users
WHERE
 username = ' '
AND
 password = ' '

SELECT *
FROM users
WHERE
 username =
AND
 password =

12345

12345

12345

12345

someString

someString

someString

someString

Attack verification - witnesses

 . This is related to fuzz logic But must be
 taken into account for witnesses

<?php

 if (isset($_POST[“concerned”]) &&
 isset($_POST[“indifferent”]) && isset($_POST[“dontknow”]))

 {
echo “you cannot be concerned, indifferent and
 don't know about it at the same time!”;

 }

?>

• “ ” The fuzzer sends witness requests
– :Web application logic is set appart

Attack verification - witnesses

:Conclusion

 It is not always possible
 to submit a

 witness .query

Classifying

 For each query received
– , If it had a witness perform grammatical

 analysis to compare structural differences

– , ' Otherwise check if there s a terminal
 node with parent and brother fully

 controlled

– Report with instrumentation info

Query classification

• :Harmless Valid query and no
 terminal nodes are fully (brothers and

) parent controlled by the attacker
SELECT

username email FROM

users

WHERE

= =

and

username bob password foo

Query classification

• :Warning -The query is not grammar
 (compliant and could not be

):analyzed

SELECT name,email FROM users
WHERE username='bob'
and password='''

SELECT name,email FROM users
WHERE username='bob'
and password='''

Could result in a successful attack or
unexploitable error (this case IS exploitable)

Query classification

• :Successful Attack the attacker can
 , control a terminal node its brothers

 :and its parent

or

=

1 1

SELECT name,email
FROM users
WHERE username='bob'
and
password='none'

or 1=1; --'

Agenda

• (!) quick Web application security overview

• - -SQL injection attacks inside out

• Fuzzing and gFuzz

• Detecting An O AliEs with gFuzz

• Reporting

• Demo

• Future work

m

Reporting

Gfuzz
analysis

Grasp
analysis &

fuzz method

Executed query (controlled chars in red)
with analysis info (background)

Fuzz
string

Fuzz
vector

Input / URL
parameter

Target

Demo

About the prototype

• , The fuzzing logic is very simple can
 be significantly improved

• -92 SQL grammar is standard ANSI SQL
 . and only for selects Can be extended

(. ., , , , ...)e g INSERT UPDATE nested SELECTS

• , In Python BSD license

• ?Any volunteers wishing to help

Future

• / Improve SQL support attack
detection

• Improve fuzzing engine
– 3 Create an audit module for w af

! framework (:// 3 . .http w af sourceforge net)

• Add XSS detection
– ! Bounded to GRASP support for XSS (Any

 ?)volunteer to help

• !Improve run time

http://w3af.sourceforge.net/

Thanks!

Useful data

Corelabs research site:
http://corelabs.coresecurity.com

CORE Grasp for PHP (original version):
http://grasp.coresecurity.com

contact:
egutesman@coresecurity.com

http://corelabs.coresecurity.com/
http://grasp.coresecurity.com/

Acknowledgments

• Pictures from
– :// . .http www sxc hu

– :// . .http www openclipart org

– :// . .http www flickr com

• People who helped
– Sebastián Cufre

– Ariel Waissbein

– Pedro Varangot

– Fernando Russ

– Aureliano Calvo

http://www.sxc.hu/
http://www.openclipart.org/
http://www.flickr.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

