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Objectives

•     ( )    Present a working tool prototype to test the
     .     security of a given web application The tool tests

 ( )  :for SQL injection attacks

•   '  From the attacker s perspective

•        &  Intended to be included in QA process security
.      audits Bringing precise information about potential

 .     security flaws Not limited to security experts

•  ( )      Has high er accuracy than plain fuzzing and
    automated static analysis by themselves

• :Technique

– Fuzzing

– Instrumentation
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Why Web Applications?

•     -   Common entry point for back end system
  and database access

•  Widely used

•   Easy to develop

–  Scripting languages

–     Inexperienced programmers are not
-security aware

•   (  + )    Difficult to fuzz validate errors with low
  false positive rate  



Web application (in)security

• XSS

•   Malicious File execution

•    Insecure Direct Object Reference

• CSRF

•     Information Leakage and Error
handling

•  . ,  Broken auth session management

Top Vulnerabilities (From OWASP Top 10 - 2007)

● Injection Vulns (particularly SQL) 



Consequences (SQL-injection)

•   Data theft

•  Data unavailability

•  Data alteration

•  Money losses

•   And much more
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SQL injection facts

•  It is   an injection attack

–    ( )     It happens when malicious input sent by an
   -   attacker reaches the back end DBMS engine

–       The attacker can execute queries which
 “ ”  .were supposedly not allowed

•       Are widely known inside the security
community

– ,      Yet developers still fail in avoiding them



Web application (in)security

User-supplied data

Direct usage to query database

The SQL injection problem: Basic idea

<?php

$client_id = $_POST[“id”];

$client = mysql_query(“SELECT * FROM clients WHERE id = ” . $client_id);



Supplying data

SELECT * FROM clients WHERE id = 3

$_POST[“id”]  ← 3

client.id client.name
     3        John Doe

CLIENT

SERVER

<?php

$client_id = $_POST[“id”];
$client = mysql_query(“SELECT * FROM clients WHERE id = ” . $client_id);



Supplying [offensive] data

SELECT * FROM clients WHERE id = 0 or 1=1

$_POST[“id”]  ← 0 or 1=1

client.id client.name
     1        George W
     3  John Doe
     4        Martin Green
     5        Joshua B
     76      Ellen Grant
     8        Mark Twain

CLIENTCLIENT

SERVER

<?php

$client_id = $_POST[“id”];
$client = mysql_query(“SELECT * FROM clients WHERE id = ” . $client_id);



Countermeasure technologies

•    (&  - )Web Application firewalls IDS IPS

•    Static code analysis tools

•    Dynamic code analysis tools

• Scanners

•  Code audits
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Fuzzing (general)

Detect input vectors
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•     Exception monitoring is not trivial
–   “  ”?Which are REAL exceptions

•    Classification is not trivial
–      Difficult to distinguish between real

    (  )vulns and false positives or negatives

•      Validation and discovery heuristics are
 commonly used

–   Error message detection

–   Sent text reflected

– ,  Timing and other

•       Relating Fuzz vectors with exceptions and
  vulns is difficult

Web Application fuzzing



gFuzz's approach

Fuzzing

Character-grained taint analysis 
(aka. Core GRASP)

Grammar-based analysis

+

+

A LOT of information!
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Character-grained taint analysis

• -  Run time instrumentation

•  “ ” -  It paints attacker controlled
     characters as tainted and propagates

   .taint information during execution
<form action=”process.php”>

  <input type=”text” name=”id”>

  <input type=”submit” value=“Query client”>

</form>

CLIENT SERVER

0 or 1=1 0 or 1=1



Character-grained taint analysis (cont)

Scripting language Interpreter (PHP)

DBMS

$_POST

SELECT * FROM clients WHERE id = 0 or 1=1 

SELECT * FROM clients 
WHERE user like 'john' 
AND password = password('aaa') 
OR 1 = 1; --)



Character-grained taint analysis & gFuzz

•      Data is marked from untrusted
 ( . ., , )sources e g GET POST

•      Taint marks are propagated between
   string operations during execution

•     GRASP sends information about
    (  executed queries to gFuzz from

  !)inside the interpreter



gFuzz entry sent by GRASP

<GRASP_FUZZ_ENTRY>

  <GRASP_QUERY_ID>

    /location/of/the/executed/file/userlogin.php:40

  </GRASP_QUERY_ID>

  <GRASP_FUZZ_IS_ATTACK>0</GRASP_FUZZ_IS_ATTACK>

  <GRASP_FUZZ_QUERY>

   SELECT name,email FROM users WHERE username=’bob’ and password=’foo’

  </GRASP_FUZZ_QUERY>

  <GRASP_FUZZ_QUERY_MARK>

   .............................................XXX................XXX.

  </GRASP_FUZZ_QUERY_MARK>

</GRASP_FUZZ_ENTRY>



gFuzz entry sent by GRASP

<GRASP_FUZZ_ENTRY>

  <GRASP_QUERY_ID>

    /location/of/the/executed/file/userlogin.php:40

  </GRASP_QUERY_ID>

  <GRASP_FUZZ_IS_ATTACK>0</GRASP_FUZZ_IS_ATTACK>

  <GRASP_FUZZ_QUERY>

   SELECT name,email FROM users WHERE username=’bob’ and password=’foo’

  </GRASP_FUZZ_QUERY>

  <GRASP_FUZZ_QUERY_MARK>

   .............................................XXX................XXX.

  </GRASP_FUZZ_QUERY_MARK>

</GRASP_FUZZ_ENTRY>



Grammatical analysis of SQL queries

SELECT

username email FROM

users

WHERE

SELECT name,email FROM users 

WHERE username=’bob’ and password=’foo’

= =

and

username bob password foo



Grammatical analysis + taint marks

SELECT

username email FROM

users

WHERE

SELECT name,email FROM users 

WHERE username=’bob’ and password=’foo’

= =

and

username bob password foo



Evil inputs...



Grammatical analysis

SELECT

username email FROM

users

WHERE

SELECT name,email FROM users 

WHERE username=’evil’ and password=’none' or 1=1;--’

= =

and

username evil password none

or

=

1 1



Grammatical analysis + taint marks

SELECT

username email FROM

users

WHERE

SELECT name,email FROM users 

WHERE username=’evil’ and password=’none' or 1=1;--’

= =

and

username evil password none

or

=

1 1



SQL Gramar

SQL Parsers 
& helpers

GUI

                  Fuzzer

Altogether

Web server gFuzz

GRASP 
enabled 

PHP

Apache 
WS

Attack 
Verification

logic
HTTP Request

HTTP Response

Executed Queries

<GRASP_FUZZ_ENTRY>
  <GRASP_QUERY_ID>
    /location/of/the/executed/file/userlogin.php:40
  </GRASP_QUERY_ID>
  <GRASP_FUZZ_IS_ATTACK>0</GRASP_FUZZ_IS_ATTACK>



Attack verification - witnesses

•    “ ” The fuzzer sends witness requests
–   Not always possible

–      ( ):How to choose witness strings heuristic
SELECT * 
FROM users 
WHERE 
  username = '           ' 
AND 
  password = '           '

SELECT * 
FROM users 
WHERE 
  username =  
AND 
  password = 

SELECT * 
FROM users 
WHERE 
  username = '                    ' 
AND 
  password = '                  '

SELECT * 
FROM users 
WHERE 
  username = 
AND 
  password = 

12345

12345

12345

12345

someString

someString

someString

someString



Attack verification - witnesses

     .    This is related to fuzz logic But must be
    taken into account for witnesses

<?php

    if ( isset($_POST[“concerned”]) && 
 isset($_POST[“indifferent”]) && isset($_POST[“dontknow”]) )

    {
echo “you cannot be concerned, indifferent and 
      don't know about it at the same time!”;

    }

?>

•    “ ” The fuzzer sends witness requests
–      :Web application logic is set appart



Attack verification - witnesses

:Conclusion

     It is not always possible
   to submit a

 witness .query



Classifying

   For each query received
–     ,   If it had a witness perform grammatical

    analysis to compare structural differences

– ,   '    Otherwise check if there s a terminal
      node with parent and brother fully

 controlled

–    Report with instrumentation info



Query classification

• :Harmless      Valid query and no
   terminal nodes are fully (   brothers and

)    parent controlled by the attacker
SELECT

username email FROM

users

WHERE

= =

and

username bob password foo



Query classification

• :Warning      -The query is not grammar
 (     compliant and could not be

):analyzed

SELECT name,email FROM users 
WHERE username='bob' 
and password='''

SELECT name,email FROM users 
WHERE username='bob' 
and password='''

Could result in a successful attack or 
unexploitable error (this case IS exploitable)



Query classification

•  :Successful Attack     the attacker can
   ,   control a terminal node its brothers

  :and its parent

or

=

1 1

SELECT name,email 
FROM users 
WHERE username='bob' 
and 
password='none'

or 1=1; --'
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Reporting

Gfuzz 
analysis

Grasp 
analysis & 

fuzz method

Executed query (controlled chars in red)
with analysis info (background)

Fuzz 
string

Fuzz 
vector

Input / URL 
parameter

Target



Demo



About the prototype

•      ,  The fuzzing logic is very simple can
  be significantly improved

•      -92 SQL grammar is standard ANSI SQL
   .    and only for selects Can be extended

( . ., , ,  , ...)e g INSERT UPDATE nested SELECTS

•  ,  In Python BSD license

•     ?Any volunteers wishing to help



Future

•    /  Improve SQL support attack
detection

•   Improve fuzzing engine
–      3  Create an audit module for w af

! framework ( :// 3 . .http w af sourceforge net)

•   Add XSS detection
–      ! Bounded to GRASP support for XSS (  Any

  ?)volunteer to help

•   !Improve run time

http://w3af.sourceforge.net/


Thanks! 



Useful data

Corelabs research site:
http://corelabs.coresecurity.com

CORE Grasp for PHP (original version):
http://grasp.coresecurity.com

contact:
egutesman@coresecurity.com

http://corelabs.coresecurity.com/
http://grasp.coresecurity.com/
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