
Malware of the Future

When Mathematics work for the Dark Side

Eric Filiol
efiliol@esat.terre.defense.gouv.fr,filiol@esiea-ouest.fr

ESAT Rennes & ESIEA Laval
Laboratoire de virologie et de cryptologie opérationnelles

Hack.lu Conference – October 22nd, 2008

Introduction

Claim (AV industry)

« We detect 100 % of Malware even the unkown
ones! »

Introduction

Claim (AV industry)

« We detect 100 % of Malware even the unkown
ones! »

Introduction

Theoretical result (Cohen - 1986)

« Viral detection is an undecidable problem »

• There is no program which would detect every virus.

Introduction

Fact (Attackers’ reality)

« Give me a so-called perfect defense or security
tool … and I will find how to bypass it somehow ».

• A lot of examples during those recent years (e.g. iPhone
security).

Introduction

� Who is right? Who is lying? Is there such thing as
« winable (computer) war »?

� The answer depends on the kind of attack
� Wide/Internet-size, popular/generic attacks…

⇒ Best AV software may be right … but the price to pay is high (slow
product, high false alarm sensitiveness, frequent updates…).

� Specific/targeted or small-size attacks
⇒ Attackers are right. AV are totally wrong.

� At the present time, the second case is the most
worrying one.

Introduction

� Who is right? Who is lying? Is there such thing as
« winable (computer) war »?

� The answer depends on the kind of attack
� Wide/Internet-size, popular/generic attacks…

⇒ Best AV software may be right … but the price to pay is high (slow
product, high false alarm sensitiveness, frequent updates…).

� Specific/targeted or small-size attacks
⇒ Attackers are right. AV are totally wrong.

� At the present time, the second case is the most
worrying one.

Introduction

� The real-life situation is worsening.
� Orphan diseases versus large epidemies.
� It is still and it will be always possible to

defeat any antivirus technique.
� Basic but critical fact:

� AV software are commercial product before
anything else.

� Let us explain why and how attackers’ could
design their malware in the future.

Introduction

� The real-life situation is worsening.
� Orphan diseases versus large epidemies.
� It is still and it will be always possible to

defeat any antivirus technique.
� Basic but critical fact:

� AV software are commercial product before
anything else.

� Let us explain why and how attackers’ could
design their malware in the future.

Introduction

� This talk is not to promote malware writing!

� Aim of the talk:
� Understand how the threat is bound to evolve.

� Be able to understand why AV vendors are wrong.

� Understand the tools of a « true » computer warfare
(or cyberwar).

� How to prepare prevention and defense.

Summary of the talk

� Introduction.

� Mathematical concepts for dummies(sorry …

but it will be not too painful).

� Basic principles of malware design.

� Some examples/cases.

� Conclusion.

A few mathematical concepts

� Information theory
� Central concept ⇒ entropy.

� Useful to characterize the amount of information.

� Any information source can be characterized by its entropy (program,
language, data…).

� For secret quantities, define the amount of secret or ofuncertainty.

� Main tools
� Probability theory and statistics.

� Testing simulability (Filiol - 2007).
� Tell me which statistical tests you use and my data willbehave accordingly

to bypass your detection.

� Cryptology and steganography.

A few mathematical concepts

� Complexity theory
� Central concept ⇒ # of operations to solve a problem.

� Problems are classified in complexity classes.

� Polynomial class (P) ⇒ « easy » to solve.

� Non deterministic polynomial class (NP) ⇒ « hard » to solve.

� NP-complete⇒ hardest problems in NP (« very hard »).

� Even higher complexity classes (Σi andΠi classes withΣ1 =
NP andΣ2 = NPNP...).

� In practice, only the P class is computable (from seconds to a few
hours however!).

� Main tools: combinatorics and discrete maths.

A few mathematical concepts

� Complexity theory
� Central concept ⇒ # of operations to solve a problem.

� Problems are classified in complexity classes.

� Polynomial class (P) ⇒ « easy » to solve.

� Non deterministic polynomial class (NP) ⇒ « hard » to solve.

� NP-complete⇒ hardest problems in NP (« very hard »).

� Even higher complexity classes (Σi andΠi classes withΣ1 =
NP andΣ2 = NPNP...).

� In practice, only the P class is computable (from seconds to a few
hours however!).

� Main tools: combinatorics and discrete maths.

A few mathematical concepts

� Computability theory
� Central concept ⇒ Turing machine.

� Decide whether there exists a Turing machine (e.g.
a program) which can compute a given problem.

� Some problems are not computable (the
corresponding Turing machine never stops).

� Consequently the problem has no solution!

� Famous example: the virus detection problem!

� Main tools: formal grammars and languages.

Basic Principles of

(undetectable) Malware Design

Basic Principles of Design

� Build your code in such a way that the
problem is (for the AV software):
� Either « hard » to compute (NP and above),

� Or is not computable.

� Exploit the fact that AV are commercial
products only.
� AV just devote a few hundreds of cycles only to

analyse ⇒ just take more
� (τ-obfuscation – Beaucamps – Filiol 2006).

Basic Principles of Design (2)

� Fool the detection algorithms.
� Any detection algorithm can be modelled as a

statistical testing (Filiol – Josse 2007).
� Use testing simulability (Filiol 2007).
� Use « malicious » cryptography and « malicious »

statistics (Filiol – Raynal CanSecWest 2008).
� Use code armouring to forbid code first analysis

� Bradley codes (Filiol 2005).

� Imagine new forms of malware.
� And combine all the previous principles!

Basic Principles of Design (3)

� At the code level, think both in terms of:
� sequence based detection,

� AND behaviour-based detection.

� You have to bypass both of them.

� Example of failure: GpCode (2008).

� Analyze the target (user, AV software,
environment…).

A Few Examples and Cases

… among many possible ones

A Few Examples and Cases.

� Let us present a few (among many)
examples and cases drawn from
� Legal cases (forensics analysis).
� Real targeted attacks analysis.
� Research and experiments.

� What you MUST keep in mind:
� Successful attack = Code + attack protocol.
� Considering the code only can be worthless.

� In fact think like a military/intelligence guy.

K-ary Malware

or Spliting the Viral Information

K-ary malware.

Starting idea : a real-case (2004)

A

DC

B

• The malware installs three variants of
itself in memory.
• Variants are light polymorphic versions
of A.
• Variants are constantly refreshing
themselves (kill, regenerate, mutate
and so on…).

Everytime a AV manages to kill one of the variants, the others are reinstalling it.

K-ary malware (formalization - Filiol 2007)

� Definition: family of k (non necessary all
executable) files whose union is a malware and
whose action is that of a malware. Every part
looks innocuitous.

� Two different types:
� Parallel k-ary malware.

� Serial k-ary malware.

� Possible to combine the two types:
� Serial/parallel k-ary malware.

K-ary malware (formalization)

� For every type, three distinct classes:
� Subclass A (dependent parts).

� Subclass B (independent parts).

� Subclass C (weakly dependent parts)

� Validated through different PoC:
� OpenOffice Virus Final_Touch (de Drézigué at al. 2006).

� PoC_Serial (Filiol 2007) with 4 ≤ k ≤ 8 (any subclass).

� PoC_Parallel (Filiol 2007) with k = 4 (any subclass).

� No detection whatever may be the AV software!

K-ary malware (formalization)

� The detection of k-ary malware has been proven to
be at least NP-complete.
� NP complete if interaction Boolean functions are

deterministic.

� It is possible to design still more sophisticated
codes:
� Interaction functions can be non deterministic.

� Use combinatorial schemes (e.g. threshold schemes).

� Current research work focus on those latter cases.

The Pb_Mot Malware

or Generalized Metamorphism.

Basic Principle.

� Is is possible to design a code which cannot be
detected ever?
� The answer is positive provided that you use suitable

mutation metamorphic techniques.

� Consider formal grammars and formal languages.

� Model your mutation with formal grammar in such a way
that detection has to face an undecidable problem.

� Experimentally validated with respect to sequence-based
detection.

� Current work with respect to behaviour based detection.

Once again mathematics (sorry again).

� Alphabet Σ = {a1, a2, . . . , an}.

� A chain is a sequence of symbols ofΣ : b1b2b3…

bm with bi ∈ Σ and m ≥ 0.

� If A is a set of chains defined overΣ, we define the

set

A∗ = {x1x2 . . . xn|n ≥ 0, x1, x2, . . . , xn ∈ A}.

Formal Grammars.

� A formal grammar G is the 4-tuple G = (N,T, S, R) where:

� N is a set of non-terminal symbols;

� T is an alphabet of terminal symbols with N ∩ T = ∅;

� S ∈ N is the start symbol;

� R is a rewriting system, that is to say a finite set of rules
R ⊆ (T ∪ N)∗ × (T ∪ N)∗, such that (u, v) ∈ R ⇒ u ∉
T∗ (we cannot rewrite chains which contain only terminal
symbols).

� A pair (u, v) ∈ R is a rewriting rule or production, denoted
u ::= v as well.

Rewriting Systems

� A rewriting system R defines a rewriting relation ⇒R

defined as:
rus ⇒ rvs iff (u, v) ∈ R and (r , s) ∈ Σ∗ × Σ∗.

� We can build rvs∈ Σ∗ directly from the chain rus ∈ Σ∗.

� Example:

� Take = {A, a, b, c} and R = {(A, aAa), (A, bAb), (A, c),
(A, aca)}.
� A ⇒R aAa

� aAa⇒R aaAaa

� aaAaa⇒R aacaa

Formal Languages

� A formal language is the set L(G) is the set of
“words” generated with respect to the formal
grammar G.

� From this point of view, natural languages and
programming languages are just instances of a
wider concept.

� But there exist far more complex grammars.

Chomsky Classification

� Four main classes of grammars:
� Class 0 grammars (or free grammars). Generate languages decided

by Turing machines.

� Class 1 grammars (or context-sensitive grammars). Size of words
cannot decrease. This class contains all natural languages.

� Class 2 grammars (context-free grammars). Subsets of this class
contain programming languages.

� Class 3 grammars (or regular grammars). Productions are in the
form of X ::= x or X ::= xY with (X,Y) ∈ N2 and x ∈ T∗.

� There exist other (still more complex) formal grammars.

Formal Definition of Code Mutation

� Consider the set of x86 instructions as the working alphabet.

� Instructions may be combined according to (rewriting) rules
that completely define every compiler.

� This set of rules can be defined as a class 2 formal grammar
(assembly language).

� Implementing a polymorphic engine consists in generating a
formal language: the polymorphic language with its own
grammar.
� ⇒ E.g. Polymorphic grammar.

Trivial Polymorphism.

� Take the grammar G = {{A,B}, {a, b, c, d, x, y}, S, R}.

� Instructions a, b, c and d are garbage code while instructions
x and y are the decryptor’s instructions. R is defined as:
� S ::= aS|bS|cS|xA

� A ::= aA|bA|cA|dA|yB

� B ::= aB|bB|cB|dB|ε

� This polymorphic language is made up of every word in the
form of

{a, b, c, d}∗x{a, b, c, d}∗y{a, b, c, d}∗

Formal Definition of Code Mutation (2)

� Every of the language words corresponds to a mutated
variant of the initial decryptor.

� It is “easy” (e.g for an antivirus) to determine that theword
abcddxdis not in this language with respect to G, contrary to
the wordadcbxaddbydab.

� The critical issue for any antivirus is then to have an
algorithm which is able to determine whether a “word” (a
mutated form) belongs to a polymorphic language or not.

� What is the detection complexity (or language decision)?

Langage Decision Problem

� Definition: Let G = (N,T, S, R) be a grammar and x ∈ T∗

a chain with respect to G. The language decision problem
with respect to G consists in determining whether x ∈ L(G)
or not.

� To solve the language decision problem, we can
consider
� Deterministic Finite Automata (DFA),

� Non deterministic Finite Automaton (NFA),

� Turing machines.

Langage Decision Problem vs Detection

� If an antivirus embeds an automaton A that can solve the
(polymorphic) language decision problem with respect to a
given polymorphic grammar, then detection is possible.

� Two critical issues are then to be considered:
� the relevant complexity of the automaton,
� every time the polymorphic grammar is changing, the antivirus

software must be upgraded with a new automaton which decides the
new polymorphic language.

� Metamorphic techniques are more powerful than
polymorphic ones since every new metamorphic mutation
produces a new grammar and a new word generated by the
latter at the same time.

Formal Definition of Metamorphism

� Definition: Let G1 = (N,T, S, R) and G2 = (N′,T′, S′, R′) be
grammars where T′ is a set of formal grammars, S′ is the
(starting) grammar G1 and R′ a rewriting system with respect
(N′ ∪ T′)∗. A metamorphic virus is thus described by G2 and
every of its mutated form is a word in L(L(G2)).

� This definition describes the fact that from one metamorphic
form to another, the virus kernel is changing: the virus
mutates and changes the mutation rules at the same time.

� Detecting such sophisticated metamorphism is equivalent to
solve the language decision problem twice.

Language Decision Complexity

� Theorem: The language decision problem:
� is undecidable for class 0 grammars;
� has NP-complexity for class 1 and class2 grammars;
� has polynomial complexity for class 3 grammars.

� Then the choice of underlying grammar is essential

when designing a polymorphic/metamorphic engine.

It has a direct impact on its resistance against its

potential detection.

The PoC Pb_Mot Metamorphic Malware.

� Proof-of-concept of undetectable metamorphic malware.

� Based on the « Word problem » defined by Post in 1950.

� One of the most famous undecidable problems.
� Are two finite words r and s overΣ equivalent or not, up to a

rewriting system R.

� Equivalently, it consists in deciding whether r ⇒R
∗ s or not.

Tzeitzin Systems.

� Smallest undecidable semi-Thue systems T0 and T1:

(ac, ca),
(ad, da),
(bc, cb),
(bd, db),
(eca, ce),
(edb, de),
(cca, ccae)

(ac, ca),
(ad, da),
(bc, cb),
(bd, db),
(eca, ce),
(edb, de),
(cdca, cdcae),
(caaa, aaa),
(daaa, aaa)

The PoC Pb_Mot Metamorphic Malware (2).

� Use formal grammars whose rewriting system contains a
Tzeitsin systems.
� ⇒ the code mutation engine will be undecidable as well.

� The engine’s rewriting (mutation) rules change from
mutation to mutation.

� Two main constraints are to be satisfied:
� the rewriting system of G2 contains an undecidable Thue system;
� every word (hence a grammar) in Li (G2), during the ith mutation

step, contains an undecidable Thue system as well.

� The rewriting system of Li (G2) grammars are coded as
words on the alphabet (N ∪ T)∗.

� Detection of PoC Pb_Mot is undecidable

Discussion

� What about the detection of PoC Pb_mot
metamorphic codes?
� Sequence-based detection fail since mutation is based on

an undecidable problem.
� On execution, once the code is unprotected, it can be

analysed. But antivirus and virus do not to play the same
game.

� With τ -obfuscation (Beaucamps - Filiol, 2006),
metamorphic codes can delay their own disassembly in
an arbitrary timeτ , more than any antivirus (commercial
products) can accept.

Discussion (2)

� The theoretical approach with formal grammars is a new, promising
way to systematically distinguish efficient techniques from non trivial
or unefficient ones.

� Until now, known (theoretically detected) metamorphic codes refer to
rather naive or trivial instances for which detection remains “easy”.

� Some behaviours may represent useful invariant that couldbe
considered by antivirus in the future (behaviour-based detection).

� Nest step is behavioural polymorphism/metamorphism: code
behaviours both at the micro- and the macro level would change from
replication to replication.

� Systematic exploration of subclasses of grammar is essential as well.

Optimized worm propagation.

…or how to design the perfect botnet.

Optimized worm propagation.

� How to design a stealth but fast enough worm to
subvert an unknown Internet-sized network?
� Design of a two-level malicious network.
� Use some combinatorial structure to spread and

manage the worm.
� The worm does not require anya priori knowledge

about the network.

� The level of connection overhead (wrong, useless
worm connections) is optimally lowered.

� PoC and SuWast (simulator) (Filiol and al. 2007)

General Worm Strategy.

� The target network is set up into a two-level hierarchy.
� Locally, « malicious » P2P networks are set up (lower networks;

local maganement of dynamic address hosts).

� Every malicious lower network also manage a single static IP
adress.

� At a macro level, a malicious network of static IP addresses is set
up (worm upper network).

� Globally, a graph structure G to manage fixed IP addresses only
(maintained at the attacker’s side).

� The basic tools to manage the different networks are DHT
(Dynamic Hash Tables).

General Worm Strategy (2).

� These two structures are connected at the fixed IP
addresses’ level.

� The attacker monitors data sent by every infected machine.

� The overall, upper level topology of the malicious network
is managed at the attacker’s level through the graph G.

� The two-level structure aims at making the worm spread as
invisible as possible.
� From one given node, the worm spreads to nodes that used to

communicate with it only.

� Existing previous connection is considered as a “trust” relation.

General Worm Strategy (2).

� These two structures are connected at the fixed IP
addresses’ level.

� The attacker monitors data sent by every infected machine.

� The overall, upper level topology of the malicious network
is managed at the attacker’s level through the graph G.

� The two-level structure aims at making the worm spread as
invisible as possible.
� From one given node, the worm spreads to nodes that used to

communicate with it only.

� Existing previous connection is considered as a “trust” relation.

Worm Spread Mechanism.

This step aims at finding IP addresses to infect.

1. With a probability p0 < 0.1, generate a random IP adress.
Then, the worm tries to infect this random IP address.

2. The worm then locally looks for existing addresses to infect:
� ARP table and directory of given software applications:

Internet browser, antivirus, firewall...
� Identification of machines already connected to the local

machine: netstat, nbtstat, nslookup, tracert...
3. Attempt to spread to these addresses and update DHT

structures if successful.
4. Information is sent to the attacker’s monitoring machine.

The worm determines whether a target is already infected or not.

Collected Data.

� To monitor the worm activity and to evaluate its
efficiency, the attacker use some indicators.

� The corresponding (directed) graph structure G
(describes the worm upper network) is defined as
follows:

� each fixed IP address is a graph node,

� node i is connected to node j if machine j has been
infected by machine i .

Collected Data (2).

� Let us suppose that machine i successfully managed
to infect machine j at time t. The following data are
collected:

� IP address of machine i .

� IP address of machine j .

� A single fixed IP address.

� The time of infection.

� The infection mark (machine j was already infected or not)

Managing the Infected Network

� Once the worm has infected any possible machine, the
attacker has to control, set up or modify the worm behavior
(botnet admin).

� DHT structures must be managed in order to avoid a too much
increase of their size.

� Systematically, the DHTs of a given machine i dynamically manages
and keeps only the IP addresses corresponding to machines recently
connected to machine i .

� Use of a node identification system based on node ID built
from the local IP address and the XOR metrics.

Managing the Infected Network (2)

� Use of a weighted measure for every IP address in
the DHTs tables. Let us consider DHTi

1 of machine
i .

� For every other IP address j in DHTi
1 , let us denote dij the

(xor) distance between machines i and j and tij the last
connection time (in seconds) between machine i and j .

� Consider the following weight:

wij = dij × tij .
� So, DHTi

1 permanently self-updates in order to keep
only the IP addresses with lowest weight wij .

The Botnet Graph

� The aim is to model the connections between fixed
addresses by means of a directed graph G.

� nodes of G, denoted (ni)1≤ i≤ N are representing fixed IP
addresses (generally a server) ;

� Entries of the incidence matrix of G are defined by:
� ai,j = 1 if computer j has been infected by computer i

� Otherwise ai,j = 0.

Managing the Infected Network (3)

� Search for vertex cover within the graph.

� Definition: Let G a undirected graph (V , E). The
vertex cover is a subset V ′ of the vertices of the
graph which contains at least one of the two
endpoints of each edge:

V ′ ⊂ V : ∀ {a, b} ∈ E, a ∈ V ′ or b ∈ V ′

� The vertex cover problem is NP-complete.

� But efficient heuristics do exist (Dharwadker 2006).

Managing the Infected Network (4)

� Let us consider the following toy graph.

� The node subset {2, 4, 5} is a vertex cover of G.
Moreover, it is the smallest possible one.

Managing the Infected Network (4)

� From the data collected the attacker will first try to identify a vertex cover.

1. The attacker looks for a vertex cover V ′ = {n i1 , . . . , nik }. He may consider

a partial subgraph.

2. The information that intends to adapt the worm behaviour is sent to nodes
nij ∈ V ′ with 1 ≤ k, only.

3. Each of the nodes nij ∈ V ′ will then spread locally to other nodes of the
graph according to a suitable ordering (for exemple, in the previous node 3
can be updated either by node 2 or node 4, but only node 2 will).

� The use of a vertex cover set minimizes the number of communications
between nodes while covering all the nodes quite simultaneously.

� From the network defender’s side, the problem is far more complex since
he does not have the collected data in the same way the botherder does.

Simulation and results
� Design of Suwast (Super Worm Analysis and Simulation

Tool).

� Non public simulator.

� Powerful simulation tool of complex, heterogenous
networks (clients, servers, routers...), enabling simulations
of network attacks in a controlled environment at packet
level.

� Large-scale simulations (up to a 60,000-host heterogeneous
network on a single 2 GB machine).

� Possibility to interconnect such machines to simulate
heterogeneous networks of millions of hosts.

Simulation and results (2)

� Two metrics have been used:

� the Network Infection Rate (NIR):

� the Overinfection Rate (OR):

N
NIR

hosts infected of#=

hosts infected of #

hosts infectedalready of attemptsinfection of #=OR

Simulation and results (2)

� Two metrics have been used:

� the Network Infection Rate (NIR):

� the Overinfection Rate (OR):

N
NIR

hosts infected of#=

hosts infected of #

hosts infectedalready of attemptsinfection of #=OR

Simulation and results (3)

� Three essential results are noticeable:
� the parameter p0 has a significant impact on both the NIR

and the OR. The case p0 = 0.04 is optimal, provided that
the server neighborhood parameter is not to large;

� the NIR is systematically greater to 90 % if 3 ≤ α (server
neighborhood parameter), most of the results being closer
to 99 %.

� the server neighborhood parameterα has a more
significant impact on the OR. Optimally, we have

α ∈ [3, 6].

Conclusion

� Quite an infinite number of doing undetectable
malware.

� What is the level of threat nowadays?
� Quite impossible to say.

� Potentially high for targeted attacks (intelligence
agencies or military forces in some countries).

� Probably low to medium for other attackers… until now.

� Require skilled malware writers with a good level both
in mathematics, computer science and programming.

Conclusion

� The solution to fight against those malware of the
future is no longer technical and will never be!

� Only accurate and strong security policies are
likely to be the best protection.
� Avoid to be infected or you are dead!

Thanks for your attention

Have a nice Hack.lu conference

Bibliography

� E. Filiol (2007) Techniques virales avancées, collection IRIS, Springer Verlag. An English
translation is pending.

� P. Beaucamps et E. Filiol. On the possibility of practically obfuscating programs - Towards a
unified perspective of code protection. WTCV'06 Special Issue, G. Bonfante & J.-Y. Marion
eds, Journal in Computer Virology, 3 (1), 2007.

� E. Filiol, S. Josse. A Statistical Model for Viral Detection Undecidability. EICAR 2007
Special Issue, V. Broucek ed., Journal in Computer Virology, 3 (2).

� E. Filiol. Formalization and Implementation Aspects ofK-ary (malicious) Codes. EICAR
2007 Special Issue, V. Broucek ed., Journal in Computer Virology, 3 (2).

� E. Filiol. Metamorphism, Formal Grammars and Undecidable Code Mutation. International
Journal in Computer Science, 2 (1), pp. 70--75, 2007.

� E. Filiol, E. Franc, A. Gubbioli, B. Moquet et G. Roblot. Combinatorial Optimisation of
Worm Propagation on an Unknown Network. International Journal in Computer Science, 2
(2), pp. 124--130, 2007.

� E. Filiol & F. Raynal. Malicioux Cryptography ... reloaded and also malicious statistics.
CanSecWest 2008, Vancouver, March 26th - 28th, 2008.

