> 802.11 Security Inaccessible Star ?

Philippe TEUWEN Cédric BLANCHER

Hack.lu 2006 October 19-21 http://hack.lu/

EAC

Philippe TEUWENCédric BLANCHER 802.11 Security

Agenda

2 Messing with network

- Attacking hotspots
- Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

4 Conclusion

5 References

- Demos
- Bibliography

Agenda

Public WiFi networks

- 2 Messing with network
 - Attacking hotspots
 - Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

4 Conclusion

5 References

- Demos
- Bibliography

Public WiFi networks

Open wireless networks

- Anybody can access network
- Zero conf. or so
- Services open to anyone

Anybody can access/play/attack...

Public WiFi networks

Open wireless networks

- Anybody can access network
- Zero conf. or so
- Services open to anyone

Anybody can access/play/attack...

Security specifics

Security?

- No authentication/authorization
- No message authenticity
- No confidentiality
- Etc.

Some clients isolation measures

Open networks

Open infrastructure network : anyone can join

- Generous users who share their access
- Any traffic allowed to Internet
- Sometimes some restrictions (ports, bandwidth)

Legal issues?

Captive portal

Open infrastructure network : anyone can join

- Outbound traffic is filtered out
- HTTP traffic is redirected to auth. portal
- Once registered, client can access Internet

Mesh networks

Adhoc based network

- Clients to clients links
- Clients can join/move/leave
- Dynamic and adaptative routing AODV, OLSR provide dynamic and adaptative routing

Attacking hotspots Attacking Mesh networks

Agenda

1 Public WiFi network

- 2 Messing with network
 - Attacking hotspots
 - Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

4 Conclusion

5 References

- Demos
- Bibliography

Attacking hotspots Attacking Mesh networks

Messing with networkAttacking hotspots

• Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

4 Conclusion

5 References

- Demos
- Bibliography

Attacking hotspots Attacking Mesh networks

Rogue AP Attack principles

Classical, unexpensive, well known layer $1/2\ {\rm attack}$

- Set up AP with same configuration
- Power-up and associate clients
- Divert client traffic and play

Easy, efficient, powerful tools available[KRM]

Attacking hotspots Attacking Mesh networks

Take advantage from traffic redirection

- Credentials interception
- Crypto MiM attack^a
- Assisted registration

Not very practical if not gifted with impressive 6th sense

^aWho cares about that f**kin' popup anyway?

Attacking hotspots Attacking Mesh networks

Tracking authenticated clients

Captive portal can only rely on network addresses for clients identification

- MAC address
- IP address

Being able to spoof thoses addresses allows existing authorization takeover

Attacking hotspots Attacking Mesh networks

MAC based authorization tracking

Registered clients are identified by their MAC address

- MAC address is easy to spoof
- No MAC layer conflict on WiFi network
- Just need a different IP

Attacking hotspots Attacking Mesh networks

MAC based tracking practical bypass

Change WiFi interface MAC address

MAC spoofing
joker# ifconfig wlan0 hw ether \$MAC
oker# ifconfig wlan0 \$IP \$NETMASK \$BROADCAST
oker# route add default \$FIREWALL

Attacking hotspots Attacking Mesh networks

IP based authorization tracking

- Registered clients are identified by their IP address
 - IP address are just a little more tricky to spoof
 - ARP cache poisoning helps redirecting traffic
 - Traffic redirection allows IP spoofing
- So called Smart Spoofing^a

^aSee my LSM 2002 talk[BLA02], arp-sk website[ARPS] for details

Attacking hotspots Attacking Mesh networks

IP based tracking practical bypass

"Smart spoofing"

IP spoofing

Attacking hotspots Attacking Mesh networks

MAC+IP addresses based authorization tracking

Teh-Smart tracking technic?

- Previous technic won't help because of MAC address checking
- Send traffic with spoofed MAC address
- ARP cache poisoning and IP spoofing for answers redirection

Attacking hotspots Attacking Mesh networks

Why does MAC+IP does not help either?

Layer2 and Layer3 are close to independant

- No correlation between ARP cache and filtering
- Joker's MAC spoofed frames are accepted
- Returning frames are sent with Joker's MAC address

Attacking hotspots Attacking Mesh networks

MAC+IP tracking bypass

Joker uses ebtables[EBT] to have output frames spoofed

MAC+IP spoofing

Then IP spoofing can be done, performing "Smarter spoofing" :)

Attacking hotspots Attacking Mesh networks

Demo

Demo

- Captive portal bypass
- MAC+IP spoofing

э

< (□)

Attacking hotspots Attacking Mesh networks

Few other technics

- Misconfigurations
- DNS based communication[OZY] or tunneling[NSTX]
- Administration network on the same VLAN, accessible through WiFi
- ESTABLISHED, RELATED -j ACCEPT prevents connections drop when authorization expires on Linux based systems
- Etc.

Attacking hotspots Attacking Mesh networks

Messing with network
 Attacking hotspots
 Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

4 Conclusion

5 References

- Demos
- Bibliography

Attacking hotspots Attacking Mesh networks

Dynamic routing

Mesh networks relies on dynamic routing

- Neighbourhood discovery
- Network announces
- Link table
- Routing table

Lots of networks use OLSR

Attacking hotspots Attacking Mesh networks

Dynamic routing abuse

No authentication/integrity measure

• Anybody can announce anything

Scenario

- Use a powerful antenna
- Announce Internet connectivity
- Gather traffic from part of network
- Play with connections

Attacking hotspots Attacking Mesh networks

Dynamic routing abuse

No authentication/integrity measure

Anybody can announce anything

Scenario

- Use a powerful antenna
- Announce Internet connectivity
- Gather traffic from part of network
- Play with connections

Attacking hotspots Attacking Mesh networks

Multipoint route injection

One can just inject OLSR messages

- without being part of network
- to multiple links
- Route injection
 - Includes neighbourhood
 - Becomes more consistent
 - Stays more stealth

Can use arbitrary messages using Wifitap

Traffic tampering Bidirectional station isolation bypass

Agenda

- Public WiFi networks
- 2 Messing with network
 - Attacking hotspots
 - Attacking Mesh networks
- 3 Leurring clients
 - Traffic tampering
 - Bidirectional station isolation bypass
- 4 Conclusion
- 5 References
 - Demos
 - Bibliography

Traffic tampering Bidirectional station isolation bypass

All known "LAN attacks" are available

- LAN attacks (ARP, DHCP, DNS, etc.)
- Traffic interception and tampering
- Direct station attacks

Think of infamous personal firewalls exception for local network or loose firewall settings...

Traffic tampering Bidirectional station isolation bypass

Messing with network
 Attacking hotspots
 Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

4 Conclusion

5 References

- Demos
- Bibliography

Traffic tampering Bidirectional station isolation bypass

Traffic tampering

WiFi communication can be listened on the air

- Listen to WiFi traffic
- Spot interesting requests
- Inject your own crafted answers
- You've done airpwn-like[AIRP] tool

Applications : ARP spoofing, DNS spoofing, malicious data injection, etc.

Traffic tampering Bidirectional station isolation bypass

Demo

Demo

- DNS Spoofing
- Ping answering machine

Traffic tampering Bidirectional station isolation bypass

Messing with network
 Attacking hotspots
 Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

4 Conclusion

5 References

- Demos
- Bibliography

Traffic tampering Bidirectional station isolation bypass

Stations isolation

- Security feature that blocks traffic within BSS
- Usually known as station isolation
 - Station sends To-DS frame
 - AP sees destination is in BSS
 - AP drops the frame

No From-DS frame, so no communication^a : stations can't talk to each other...

^aDoes not work between 2 APs linked via wired network

Traffic tampering Bidirectional station isolation bypass

Isolation bypass using traffic injection

Joker can inject From-DS frames directly

- No need for AP approval
- You can spoof about anyone
- You're still able to sniff traffic

Traffic injection allows complete isolation bypass

Traffic tampering Bidirectional station isolation bypass

Bidirectionnal communication with injection Sending packets the ninja way

Sending traffic directly to stations allows direct station to station communication, even if :

- AP applies restrictions
- AP refuses association
- AP is out of reach

Talking to stations the ninja way, without being associated

Public WiFi networks Messing with network Leurring clients Conclusion References	Traffic tampering Bidirectional station isolation bypass
Attacking stations Proof of concept : Wifitap	

Needed a PoC for Cisco PSPF bypass and wrote Wifitap

- Written in Python[PYTH]
- Relies on Scapy[SCAP]
- Uses tuntap device and OS IP stack
- Use WiFi frame injection and sniffing

Wifitap allows communication with station despite of AP restrictions

Wifitap works for mesh networks as well

Traffic tampering Bidirectional station isolation bypass

э

Wifitap usage

<pre># ./wifitap.py -h</pre>		
Usage: wifitap -b <	<pre><bssid> [-o <iface>] [-i <iface></iface></iface></bssid></pre>	[-p]]
[-s	<smac>] [-w <wep key=""> [-k <key i<="" td=""><td>d>]]</td></key></wep></smac>	d>]]
[-d	[-v]] [-h]	
-b <bssid></bssid>	specify BSSID for injection	
-o <iface></iface>	specify interface for injection	
-i <iface></iface>	specify interface for listening	
-s <smac></smac>	specify source MAC address	
-w <key></key>	WEP mode and key	
-k <key id=""></key>	WEP key id	
-d	activate debug	
-v	verbose debugging	_
-h	this so helpful output	EADS

Traffic tampering Bidirectional station isolation bypass

Wifitap in short

How does it work?

Sending traffic

- Read ethernet from tuntap
- Add 802.11 headers
- Set BSSID, From-DS and WEP if needed
- Inject frame over WiFi

Receiving traffic

- Sniff 802.11 frame
- Remove WEP if needed and 802.11
- Build ethernet frame
- Send frame through tuntap

Attacker does not need to be associated (AP or Adhoc)

Traffic tampering Bidirectional station isolation bypass

Wifitap in short

How does it work?

Sending traffic

- Read ethernet from tuntap
- Add 802.11 headers
- Set BSSID, From-DS and WEP if needed
- Inject frame over WiFi

Receiving traffic

- Sniff 802.11 frame
- Remove WEP if needed and 802.11
- Build ethernet frame
- Send frame through tuntap

Attacker does not need to be associated (AP or Adhoc)

Traffic tampering Bidirectional station isolation bypass

Wifitap in short

How does it work?

Sending traffic

- Read ethernet from tuntap
- Add 802.11 headers
- Set BSSID, From-DS and WEP if needed
- Inject frame over WiFi

Receiving traffic

- Sniff 802.11 frame
- Remove WEP if needed and 802.11
- Build ethernet frame
- Send frame through tuntap

Attacker does not need to be associated (AP or Adhoc)

Traffic tampering Bidirectional station isolation bypass

P

Demo

Demo

• Wifitap in action

Э

Traffic tampering Bidirectional station isolation bypass

Hotspots with isolation

Some hotspots implement isolation to prevent clients from attacking each other

- Does not protect against "session" hijacking
- Attacker must then to take over victim's session
- Victim does not have access anymore, and still pays for it And among all, it's pretty useless...

Traffic tampering Bidirectional station isolation bypass

More hotspot bypassing...

Hijacking people authorization is not very kind

- Use Wifitap to bypass isolation
- Now you can route back his traffic to your victim Your victim and you are both able to surf transparently

Now, you "can be a true gentlemanly [h|cr]acker" [ISCD];)

Agenda

Public WiFi networks

2 Messing with network

- Attacking hotspots
- Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

4 Conclusion

5 References

- Demos
- Bibliography

Conclusion

So you thought dropping the wire was that easy?

- No privacy, no integrity
- Public accesses are just so insecure
- Crackers do know about that

Conclusion

What do we do to fix that?

Clients

- Open network services can't be trusted
- Open network traffic neither
- Think authentication, encryption, VPN

Don't forget to tunnel DNS as well :)

Infrastructure

- Considering WEP? Forget it !
- Consider real stuff : WPA/WPA2 w/EAP
- Now supported on most devices/OS

Conclusion

What do we do to fix that?

Clients

- Open network services can't be trusted
- Open network traffic neither
- Think authentication, encryption, VPN

Don't forget to tunnel DNS as well :)

Infrastructure

- Considering WEP? Forget it !
- Consider real stuff : WPA/WPA2 w/EAP
- Now supported on most devices/OS

Conclusion

What do we do to fix that?

Clients

- Open network services can't be trusted
- Open network traffic neither
- Think authentication, encryption, VPN

Don't forget to tunnel DNS as well :)

Infrastructure

- Considering WEP? Forget it!
- Consider real stuff : WPA/WPA2 w/EAP
- Now supported on most devices/OS

< 67 ▶

Thank you for your attention and...

Greetings to ...

- BCS Asia 2006 people, partners and sponsors
- EADS CRC/DCR/STI/C team
- Rstack.org team http://www.rstack.org/
- MISC Magazine http://www.miscmag.com/
- French Honeynet Project

http://www.frenchhoneynet.org/

Download theses slides from http://sid.rstack.org/

Demos Bibliography

Agenda

Public WiFi networks Messing with network Attacking hotspots Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

4 Conclusion

5 References

- Demos
- Bibliography

Demos Bibliography

Messing with network
Attacking hotspots
Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

4 Conclusion

- Demos
- Bibliography

Demos Bibliography

Demos

We Proudly R3wt

- Captive portal bypass
- Traffic tampering
- Bidirectional isolation bypass

Demos Bibliography

Messing with network
 Attacking hotspots
 Attacking Mesh networks

3 Leurring clients

- Traffic tampering
- Bidirectional station isolation bypass

Conclusion

- Demos
- Bibliography

Demos Bibliography

Bibliography I

- [ABOB] Bernard Aboba, The Unofficial 802.11 Security Web Page, http://www.drizzle.com/~aboba/IEEE/
- [BLA02] C. Blancher, Switched environments security, a fairy tale, 2002, http://sid.rstack.org/pres/0207_LSM02_ARP.pdf
- [BLA03] C. Blancher, Layer 2 filtering and transparent firewalling, 2003 http://sid.rstack.org/pres/0307_LSM03_L2_Filter.pdf
- [BLA06] C. Blancher, WiFi traffic injection based attacks, 2005-2006 http://sid.rstack.org/pres/0602_Securecon_WirelessExpjection

Demos Bibliography

Bibliography II

- [AIRP] Airpwn, http://www.evilscheme.org/defcon/
- [ARPS] Arp-sk, http://sid.rstack.org/arp-sk/
- [EBT] Ebtables, http://ebtables.sourceforge.net/
- [KRM] Karma, http://theta44.org/karma/
- [NSTX] Nstx, http://nstx.dereference.de/nstx/
- [OZY] OzymanDNS, http://www.doxpara.com/ozymandns_src_0.1.tgz
- [] [PYTH] Python, http://www.python.org/
- SCAP] Scapy, http://www.secdev.org/projects/scapy/EADS

Demos Bibliography

Bibliography III

- [WTAP] Wifitap, http://sid.rstack.org/index.php/Wifitap_EN
- [ISCD] ISC Handler's Diary, http://isc.sans.org/diary.php?date=2005-06-26

